Марковская цепь — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Эргодическая цепь)
Строка 80: Строка 80:
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
В эргодической цепи можно выделить '''циклические классы'''. Количество циклических классов <tex> d </tex> называют '''периодом цепи''', если цепь состоит целиком из одного циклического класса, её называют [[Регулярная марковская цепь|регулярной]]. С течением времени текущее состояние движется по циклическим классам в определенном порядке, причем каждые '''d''' шагов она оказывается в одном и том же циклическом классе.
+
В эргодической цепи можно выделить '''циклические классы'''. Количество циклических классов <tex> d </tex> называют '''периодом цепи''', если цепь состоит целиком из одного циклического класса, её называют [[Регулярная марковская цепь|регулярной]]. С течением времени текущее состояние движется по циклическим классам в определенном порядке, причем каждые '''d''' шагов она оказывается в одном и том же циклическом классе. Таким образом, '''циклический класс''' — класс, в котором цепь оказывается каждый <tex> d </tex>-ый шаг.
 
}}
 
}}
  

Версия 16:54, 6 июня 2012

Определение:
Цепь Маркова — последовательность случайных событий с конечным или счётным числом исходов, характеризующаяся тем, что при фиксированном настоящем будущее независимо от прошлого.

Процесс в каждый момент времени находится в одном из [math] n [/math] состояний.

При этом, если он находится в состоянии с номером [math] i [/math], то он перейдет в состояние [math] j [/math] с вероятностью [math] p_{ij} [/math].

Матрицу [math] P = ||p_{ij}|| [/math] называют матрицей переходов.


На матрицу переходов накладываются следующие условия:

  1. [math] p_{ij} \geqslant 0 [/math]
  2. [math] \forall i\ \ \sum\limits_{j} p_{ij} = 1 [/math]

Такая матрица называется стохастической.

Марковскую цепь можно представить в виде графа, в котором вершины — это состояния процесса, а ребра — переходы между состояниями, и на ребре из [math] i [/math] в [math] j [/math] написана вероятность перехода из [math] i [/math] в [math] j [/math], то есть [math] p_{ij} [/math].

Распределение вероятностей

Марковскую цепь в любой момент времени [math] t [/math] можно охарактеризовать вектором-строкой [math] c_t [/math] — распределением вероятностей по состояниям цепи ([math] c_{ti} [/math] — вероятность цепи в момент времени [math] t [/math] быть в состоянии [math] i [/math]).

Если [math] c_i [/math] — текущее распределение вероятностей, то можно узнать распределение на следующем шаге, умножив вектор на матрицу перехода:

[math] c_{i + 1} = c_{i} \times P [/math].

Из ассоциативности произведения матриц следует, что для того, чтобы узнать распределение вероятностей через [math] t [/math] шагов, нужно умножить [math] c_i [/math] на матрицу перехода, возведённую в степень [math] t [/math]:

[math] c_{i + t} = c_{i} \times P^t [/math].

Для марковской цепи иногда задают начальное распределение [math] c_0 [/math], хотя во многих классах марковских цепей распределение по прошествии большого периода времени от него не зависит (такое распределение называют предельным).

Достижимость и сообщаемость

Обозначим вероятность попасть из состояния [math] i [/math] в состояние [math] j [/math] за [math] n [/math] переходов как [math] p_{ij}^{(n)} [/math].


Определение:
Состояние [math] j [/math] достижимо (accesible) из состояния [math] i [/math], если существует такое [math] n [/math], что [math] p_{ij}^{(n)} \gt 0 [/math]. Достижимость [math] j [/math] из [math] i [/math] обозначается [math] i \rightarrow j [/math].


Определение:
Состояния [math] i [/math] и [math] j [/math] сообщаются (communicate), если они достижимы друг из друга. Сообщаемость [math] i [/math] и [math] j [/math] обозначается [math] i \leftrightarrow j [/math].


Классификация цепей и состояний

Неразложимая цепь

Определение:
Неразложимый класс (communicating class) — класс эквивалентности множества состояний по отношению сообщаемости. Если представить марковскую цепь как граф, неразложимый класс будет аналогичен компоненте сильной связности.


Определение:
Неразложимая цепь (ireducible chain) — цепь Маркова, в которой все состояния образуют один неразложимый класс.


Эргодическая цепь

Определение:
Упорядочим (очевидно, упорядочение будет частичным) неразложимые классы отношением достижимости. Минимальные элементы в таком упорядочении называются эргодическими классами. Состояния в эргодических классах называются эргодическими (ergodic), возвратными, или существенными. Все остальные неразложимые классы называются невозвратными классами. Состояния, входящие в них, называются невозвратными или несущественными.


Определение:
Если эргодический класс состоит из одного состояния, такое состояние называется поглощающим (absorbing).


Из свойств частичного упорядочения, в любой цепи Маркова найдется хотя бы один эргодический класс.


Определение:
Эргодическая марковская цепь — марковская цепь, целиком состоящая из одного эргодического класса.


Определение:
В эргодической цепи можно выделить циклические классы. Количество циклических классов [math] d [/math] называют периодом цепи, если цепь состоит целиком из одного циклического класса, её называют регулярной. С течением времени текущее состояние движется по циклическим классам в определенном порядке, причем каждые d шагов она оказывается в одном и том же циклическом классе. Таким образом, циклический класс — класс, в котором цепь оказывается каждый [math] d [/math]-ый шаг.


Таким образом, эргодические цепи делятся на регулярные и циклические.

Поглощающая цепь

Определение:
Поглощающее состояние — состояние, из которого нельзя попасть ни в какое другое.


Определение:
Поглощающей (absorbing chain) называется марковская цепь, в которой есть хотя бы одно поглощающее состояние и из любого состояния достижимо хотя бы одно поглощающее.


В примере на рисунке поглощающими являются состояния 3 и 4, а непоглощающими — 1 и 2.

Пример

Пример марковской цепи

На рисунке:

  • достижимыми состояниями являются: [math] 2 [/math] из [math] 1 [/math] (непосредственно), [math] 3 [/math] из [math] 1 [/math] (непосредственно), [math] 6 [/math] из [math] 3 [/math] (к примеру, через цепочку состояний [math] 3 \rightarrow 2 \rightarrow 4 \rightarrow 6 [/math]) и т.д.
  • сообщаются состояния [math] 1 [/math] и [math] 2 [/math] (непосредственно), [math] 6 [/math] и [math] 7 [/math] (непосредственно), [math] 1 [/math] и [math] 3 [/math] (достижимы друг из друга) и т. д.
  • неразложимыми классами являются множества вершин [math] \left \{ 1, 2, 3 \right \} [/math], [math] \left \{ 4 \right \} [/math], [math] \left \{ 5 \right \} [/math], [math] \left \{ 6, 7 \right \} [/math];
  • эргодическими классами являются множества вершин [math] \left \{ 5 \right \} [/math], [math] \left \{ 6, 7 \right \} [/math];
  • поглощающим состоянием является состояние [math] 5 [/math].
  • если расматривать [math] \{6, 7\} [/math] отдельно, можно выделить два циклических класса [math] \{6\} [/math] и [math] \{7\} [/math] (на каждом шаге цепь переходит из одного состояния в другое, а через [math] d = 2 [/math] шага возвращается в одно и то же состояние.

Литература

  • И.В. Романовский «Дискретный анализ». 3-е изд., 2003. стр. 270—279
  • Дж. Кемени, Дж. Снелл "Конечные цепи Маркова"
  • Википедия — Цепь Маркова