Редактирование: Методы решения задач теории расписаний

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 40: Строка 40:
 
# В допустимом расписании выполнение всех работ не может завершиться раньше одной из них, поэтому <tex> C_{max} \geqslant p_i </tex>.
 
# В допустимом расписании выполнение всех работ не может завершиться раньше одной из них, поэтому <tex> C_{max} \geqslant p_i </tex>.
 
# Если все станки работали время <tex> C_{max} </tex>, на них могло выполниться не больше <tex> C_{max} \cdot m </tex> работы, то есть <tex> \sum\limits_{i=1}^n p_i \leqslant C_{max} \cdot m </tex> и <tex> C_{max} \geqslant \dfrac1m \sum\limits_{i=1}^n p_i </tex>.
 
# Если все станки работали время <tex> C_{max} </tex>, на них могло выполниться не больше <tex> C_{max} \cdot m </tex> работы, то есть <tex> \sum\limits_{i=1}^n p_i \leqslant C_{max} \cdot m </tex> и <tex> C_{max} \geqslant \dfrac1m \sum\limits_{i=1}^n p_i </tex>.
Из этих ограничений следует, что <tex> C_{max} = \max {\left( \max\limits_{i=1 \cdots n} p_i,~ \dfrac1m \sum\limits_{i=1}^n p_i \right)} </tex>.
+
Из этих ограничений следует, что <tex> C_{max} = \max {\left( \max\limits_{i=1 \hdots n} p_i,~ \dfrac1m \sum\limits_{i=1}^n p_i \right)} </tex>.
  
 
Построим расписание, подходящее под эту границу: будем по очереди заполнять машины работами в произвольном порядке, и если очередная работа не помещается на текущей машине полностью, перенесем ее выходящую за <tex> C_{max} </tex> часть на следующую машину. Благодаря первому ограничению никакая работа не будет выполняться одновременно на двух станках, а благодаря второму — не останется работы, которую мы не сможем выполнить.
 
Построим расписание, подходящее под эту границу: будем по очереди заполнять машины работами в произвольном порядке, и если очередная работа не помещается на текущей машине полностью, перенесем ее выходящую за <tex> C_{max} </tex> часть на следующую машину. Благодаря первому ограничению никакая работа не будет выполняться одновременно на двух станках, а благодаря второму — не останется работы, которую мы не сможем выполнить.

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблон, используемый на этой странице: