Редактирование: Метрический тензор
Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.
Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия | Ваш текст | ||
Строка 57: | Строка 57: | ||
|about = 2 | |about = 2 | ||
|statement= <tex>\left\langle e^k;e_i\right\rangle=\left\langle e_i;e^k\right\rangle = \delta^k_i</tex>; | |statement= <tex>\left\langle e^k;e_i\right\rangle=\left\langle e_i;e^k\right\rangle = \delta^k_i</tex>; | ||
− | |proof= <tex>\left\langle e^k;y\right\rangle = (f^k;y); \forall y \in E</tex> | + | |proof= <tex>\left\langle e^k;y\right\rangle = (f^k;y); \forall y \in E</tex> Пусть <tex>y=e_i</tex>, тогда <tex>\left\langle e^k;e_i\right\rangle=(f^k;e_i)=\delta^k_i</tex> |
− | Пусть <tex>y=e_i</tex>, тогда <tex>\left\langle e^k;e_i\right\rangle=(f^k;e_i)=\delta^k_i</tex> | ||
Рассмотрим <tex>\left\langle e_i;e^k\right\rangle=\overline{\left\langle e^k;e_i\right\rangle}=\overline{\delta^k_i} = \delta^k_i</tex> | Рассмотрим <tex>\left\langle e_i;e^k\right\rangle=\overline{\left\langle e^k;e_i\right\rangle}=\overline{\delta^k_i} = \delta^k_i</tex> | ||
}} | }} |