Механизм внимания — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 7: Строка 7:
 
==Обобщенный механизм внимания==
 
==Обобщенный механизм внимания==
 
[[File:AttentionGeneral.png|350px|thumb|Обобщенное описание механизма внимания]]
 
[[File:AttentionGeneral.png|350px|thumb|Обобщенное описание механизма внимания]]
[[:Рекуррентные_нейронные_сети|RNN]] используются при обработке данных, для которых важна их последовательность. В классическом случае применения [[:Рекуррентные_нейронные_сети|RNN]] результатом является только последнее скрытое состояние <math>h_m</math>, где <math>m</math> {{---}} длина последовательности входных данных. Использование механизма внимания позволяет использовать информацию полученную не только из последнего скрытого состояниния, но и любого скрытого состояния <math>h_t</math> для любого <math>t</math>.
+
[[:Рекуррентные_нейронные_сети|RNN]] используются при обработке данных, для которых важна их последовательность. В классическом случае применения [[:Рекуррентные_нейронные_сети|RNN]] результатом является только последнее скрытое состояние <math>h_m</math>, где <math>m</math> {{---}} длина последовательности входных данных. Использование механизма внимания позволяет использовать информацию полученную не только из последнего скрытого состояния, но и любого скрытого состояния <math>h_t</math> для любого <math>t</math>.
  
 
Обычно слой использующийся для механизма внимания представляет собой обычную, чаще всего однослойную, нейронную сеть на вход которой подаются <math>h_t, t = 1 \  \ldots m</math>, а также вектор <math>d</math> в котором содержится некий контекст зависящий от конкретно задачи.
 
Обычно слой использующийся для механизма внимания представляет собой обычную, чаще всего однослойную, нейронную сеть на вход которой подаются <math>h_t, t = 1 \  \ldots m</math>, а также вектор <math>d</math> в котором содержится некий контекст зависящий от конкретно задачи.
  
Выходом данного слоя будет являтся вектор <math>s</math> (англ. ''score'') {{---}} оценки на основании которых на скрытое состояние <math>h_i</math> будет "обращено внимание".
+
Выходом данного слоя будет является вектор <math>s</math> (англ. ''score'') {{---}} оценки на основании которых на скрытое состояние <math>h_i</math> будет "обращено внимание".
  
 
Далее для нормализации значений <math>s</math> используется <math>softmax</math><ref>[https://ru.wikipedia.org/wiki/Softmax Wiki -- Функция softmax]</ref>. Тогда <math>e = softmax(s)</math>
 
Далее для нормализации значений <math>s</math> используется <math>softmax</math><ref>[https://ru.wikipedia.org/wiki/Softmax Wiki -- Функция softmax]</ref>. Тогда <math>e = softmax(s)</math>
Строка 65: Строка 65:
 
При добавлении механизма в данную архитектуру между [[:Рекуррентные_нейронные_сети|RNN]] ''Энкодер'' и ''Декодер'' слоя механизма внимания получится следуюшая схема:
 
При добавлении механизма в данную архитектуру между [[:Рекуррентные_нейронные_сети|RNN]] ''Энкодер'' и ''Декодер'' слоя механизма внимания получится следуюшая схема:
  
Здесь <math>x_i, h_i, d_i, y_i</math> имееют те же назначения, что и в варианте без механизма внимания.
+
Здесь <math>x_i, h_i, d_i, y_i</math> имеют те же назначения, что и в варианте без механизма внимания.
  
''Аггрегатор скрытых состояний энкодера (желтый)'' {{---}} аггрегирует в себе все вектора <math>h_i</math> и возвращает всю последовательность векторов <math>h = [h_1, h_2, h_3, h_4]</math>.
+
''Агрегатор скрытых состояний энкодера (желтый)'' {{---}} агрегирует в себе все вектора <math>h_i</math> и возвращает всю последовательность векторов <math>h = [h_1, h_2, h_3, h_4]</math>.
  
 
<math>c_i</math> {{---}} вектор контекста на итерации <math>i</math>.
 
<math>c_i</math> {{---}} вектор контекста на итерации <math>i</math>.
Строка 75: Строка 75:
 
''Блоки декодера (фиолетовый)'' {{---}} по сравнению с обычной ''Seq2seq'' сетью меняются входные данные. Теперь на итерации <math>i</math> на вход подается не <math>y_{i-1}</math>, а конкатенация <math>y_{i-1}</math> и <math>c_i</math>.
 
''Блоки декодера (фиолетовый)'' {{---}} по сравнению с обычной ''Seq2seq'' сетью меняются входные данные. Теперь на итерации <math>i</math> на вход подается не <math>y_{i-1}</math>, а конкатенация <math>y_{i-1}</math> и <math>c_i</math>.
  
Таким образом при помощи механизма внимания достигается "фокусирование" декодера на определенных скрытых состояниях. В случаях машинного перевода эта возможность помогает декодеру предсказывать на какие скрытые сосояния при исходных определенных словах на языке ''A'' необходимо обратить больше внимания при переводе данного слова на язык ''B''.
+
Таким образом при помощи механизма внимания достигается "фокусирование" декодера на определенных скрытых состояниях. В случаях машинного перевода эта возможность помогает декодеру предсказывать на какие скрытые состояния при исходных определенных словах на языке ''A'' необходимо обратить больше внимания при переводе данного слова на язык ''B''.
  
 
==Self-Attention==
 
==Self-Attention==
Строка 87: Строка 87:
  
 
==Источники информации==
 
==Источники информации==
 +
*[https://blog.floydhub.com/attention-mechanism/amp/ Статья о механизме внимания, его типах и разновидностях]
 
*[https://www.coursera.org/lecture/nlp-sequence-models/attention-model-lSwVa Лекция Andrew Ng о механизме внимания в NLP]
 
*[https://www.coursera.org/lecture/nlp-sequence-models/attention-model-lSwVa Лекция Andrew Ng о механизме внимания в NLP]
 
*[https://towardsdatascience.com/intuitive-understanding-of-attention-mechanism-in-deep-learning-6c9482aecf4f Статья с подробно разборанными примерами и кодом на ''Python'' и ''TensorFlow'']
 
*[https://towardsdatascience.com/intuitive-understanding-of-attention-mechanism-in-deep-learning-6c9482aecf4f Статья с подробно разборанными примерами и кодом на ''Python'' и ''TensorFlow'']
 +
*[http://jalammar.github.io/illustrated-transformer/ Статья c примерами работы Self-attention]
  
 
==Примечания==
 
==Примечания==

Версия 13:04, 22 марта 2020

Механизм внимания (англ. attention mechanism, attention model) — техника используемая в рекуррентных нейронных сетях (сокр. RNN) и сверточных нейронных сетях (сокр. CNN) для "обращения внимания" на определенные части входных данных в зависимости от текущего контекста.

Изначально механизм внимания был представлен в контексте рекуррентных Seq2seq сетей [1] для "обращения внимания" блоков декодеров на скрытые состояния RNN энкодера для любой итерации, а не только последней.

После успеха этой методики в машинном переводе последовали ее внедрения в других задачах обработки естественного языка и применения к CNN для генерации описания изображения[2] и GAN [3].

Обобщенный механизм внимания

Обобщенное описание механизма внимания

RNN используются при обработке данных, для которых важна их последовательность. В классическом случае применения RNN результатом является только последнее скрытое состояние [math]h_m[/math], где [math]m[/math] — длина последовательности входных данных. Использование механизма внимания позволяет использовать информацию полученную не только из последнего скрытого состояния, но и любого скрытого состояния [math]h_t[/math] для любого [math]t[/math].

Обычно слой использующийся для механизма внимания представляет собой обычную, чаще всего однослойную, нейронную сеть на вход которой подаются [math]h_t, t = 1 \ \ldots m[/math], а также вектор [math]d[/math] в котором содержится некий контекст зависящий от конкретно задачи.

Выходом данного слоя будет является вектор [math]s[/math] (англ. score) — оценки на основании которых на скрытое состояние [math]h_i[/math] будет "обращено внимание".

Далее для нормализации значений [math]s[/math] используется [math]softmax[/math][4]. Тогда [math]e = softmax(s)[/math]

[math]softmax[/math] здесь используется благодоря своим свойствам:

  • [math]\forall s\colon\ \sum_{i=1}^n softmax(s)_i = 1, [/math]
  • [math]\forall s,\ i\colon \ softmax(s)_i \gt = 0 [/math]

Далее считается [math]c[/math] (англ. context vector)

[math]с = \sum_{i=1}^m e_i h_i[/math]

Результатом работы слоя внимания является [math]c[/math] который, содержит в себе информацию обо всех скрытых состоянях [math]h_i[/math] пропорционально оценке [math]e_i[/math].

Пример использования для задачи машинного перевода в Seq2seq сетях

Пример добавления механизма внимания в Seq2seq сеть поможет лучше понять его предназначение. Изначально в оригинальной статье[5], представляющей механизм внимания, он применяется в контексте именно Seq2seq сети в задаче машинного перевода.

Несмотря на то, что нейронные сети рассматриваются как "черный ящик" и интерпретировать их внутренности в понятных человеку терминах часто невозможно, все же механизм внимания интуитивно понятный людям смог улучшить результаты машинного перевода для алгоритма используемого в статье.

Успех этого использования этого подхода в задаче машинного перевода обусловлен лучшим выводом закономерностей между словами находящимися на большом расстоянии друг от друга. Несмотря на то, что LSTM и GRU блоки используются именно для улучшения передачи информации с предыдущих итераций RNN их основная проблема заключается в том, что влияние предыдущих состояний на текущее уменьшается экспоненциально от расстояния между словами, в то же время механизм внимания улучшает этот показатель до линейного.

Базовая архитектура Seq2seq

Пример работы базовой Seq2seq сети

Данный пример рассматривает применение механизма внимания в задаче машинного перевода в применении к архитектуре Seq2seq.

Seq2seq состоит из двух RNNЭнкодера и Декодера.

Энкодер — принимает предложение на языке A и сжимает его в вектор скрытого состояния.

Декодер — выдает слово на языке B, принимает последнее скрытое состояние энкодера и предыдущее предыдущее предсказаное слово.


Рассмотрим пример работы Seq2seq сети:

[math]x_i[/math] — слова в предложении на языке A.

[math]h_i[/math] — скрытое состояние энкодера.

Блоки энкодера (зеленый) — блоки энкодера получающие на вход [math]x_i[/math] и передающие скрытое состояние [math]h_i[/math] на следующую итерацию.

[math]d_i[/math] — скрытое состояние декодера.

[math]y_i[/math] — слова в предложении на языке B.

Блоки декодера (фиолетовый) — блоки декодера получающие на вход [math]y_{i-1}[/math] или специальный токен start в случае первой итерации и возвращаюшие [math]y_i[/math] — слова в предложении на языке B. Передают [math]d_i[/math] — скрытое состояние декодера на следующую итерацию. Перевод считается завершенным при [math]y_i[/math], равном специальному токену end.

Применение механизма внимания для Seq2seq

Пример работы Seq2seq сети с механизмом внимания

При добавлении механизма в данную архитектуру между RNN Энкодер и Декодер слоя механизма внимания получится следуюшая схема:

Здесь [math]x_i, h_i, d_i, y_i[/math] имеют те же назначения, что и в варианте без механизма внимания.

Агрегатор скрытых состояний энкодера (желтый) — агрегирует в себе все вектора [math]h_i[/math] и возвращает всю последовательность векторов [math]h = [h_1, h_2, h_3, h_4][/math].

[math]c_i[/math] — вектор контекста на итерации [math]i[/math].

Блоки механизма внимания (красный) — механизм внимания. Принимает [math]h[/math] и [math]d_{i - 1}[/math], возвращает [math]c_i[/math].

Блоки декодера (фиолетовый) — по сравнению с обычной Seq2seq сетью меняются входные данные. Теперь на итерации [math]i[/math] на вход подается не [math]y_{i-1}[/math], а конкатенация [math]y_{i-1}[/math] и [math]c_i[/math].

Таким образом при помощи механизма внимания достигается "фокусирование" декодера на определенных скрытых состояниях. В случаях машинного перевода эта возможность помогает декодеру предсказывать на какие скрытые состояния при исходных определенных словах на языке A необходимо обратить больше внимания при переводе данного слова на язык B.

Self-Attention

TODO

См. также

Источники информации

Примечания