Редактирование: Модель алгоритма и её выбор

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 99: Строка 99:
  
 
== Существующие системы автоматического выбора модели ==
 
== Существующие системы автоматического выбора модели ==
===Автоматизированный выбор модели в библиотеке [https://www.ml4aad.org/wp-content/uploads/2018/07/automl_book_draft_auto-weka.pdf auto-WEKA] для Java===
+
===Автоматизированный выбор модели в библиотеке auto-WEKA<ref>[https://www.ml4aad.org/wp-content/uploads/2018/07/automl_book_draft_auto-weka.pdf auto-WEKA]</ref> для Java===
 
Библиотека используется для одновременного поиска оптимальной модели и оптимальных гиперпараметров модели для задач классификации и регрессии (начиная с версии 2.0).
 
Библиотека используется для одновременного поиска оптимальной модели и оптимальных гиперпараметров модели для задач классификации и регрессии (начиная с версии 2.0).
  
Библиотека позволяет автоматически выбирать из 27 базовых алгоритмов, 10 мета-алгоритмов и 2 ансамблевых алгоритмов лучший, одновременно настраивая его гиперпараметры при помощи алгоритма [https://www.ml4aad.org/automated-algorithm-design/algorithm-configuration/smac/ SMAC]. Решение достигается полным перебором: оптимизация гиперпараметров запускается на всех алгоритмах по очереди. Недостатком такого подхода является слишком большое время выбора модели.
+
Библиотека позволяет автоматически выбирать из 27 базовых алгоритмов, 10 мета-алгоритмов и 2 ансамблевых алгоритмов лучший, одновременно настраивая его гиперпараметры при помощи алгоритма SMAC<ref>[https://www.ml4aad.org/automated-algorithm-design/algorithm-configuration/smac/ SMAC]</ref>. Решение достигается полным перебором: оптимизация гиперпараметров запускается на всех алгоритмах по очереди. Недостатком такого подхода является слишком большое время выбора модели.
 +
 
 
===Автоматизированный выбор модели в библиотеке [https://epistasislab.github.io/tpot/ Tree-base Pipeline Optimization Tool (TPOT)] для Python.===
 
===Автоматизированный выбор модели в библиотеке [https://epistasislab.github.io/tpot/ Tree-base Pipeline Optimization Tool (TPOT)] для Python.===
 
[[Файл:TPOT-scheme.jpeg|500px|thumb|[https://raw.githubusercontent.com/EpistasisLab/tpot/master/images/tpot-ml-pipeline.png Рис 3. Схема выбора модели в библиотеке TPOT]]]
 
[[Файл:TPOT-scheme.jpeg|500px|thumb|[https://raw.githubusercontent.com/EpistasisLab/tpot/master/images/tpot-ml-pipeline.png Рис 3. Схема выбора модели в библиотеке TPOT]]]

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: