Изменения

Перейти к: навигация, поиск

Модуль непрерывности функции

2383 байта добавлено, 11:17, 18 ноября 2010
Теорема о выпуклом модуле непрерывности
Так как все функции семейства выпуклы вверх, то для любого <tex>\alpha \in A</tex> верно:
:<tex>\beta f_{\alpha}(t_1) + (1 - \beta) f_{\alpha}(t_2) \le f_{\alpha}(\beta t_1 + (1 - \beta) t_2)</tex>.<br />
Но, по определению <tex>f(t) \le f_{\alpha}(t)</tex>, следовательно,
:<tex>\beta f(t_1) + (1 - \beta) f(t_2) \le f_{\alpha}(\beta t_1 + (1 - \beta) t_2)</tex>.<br />
Переходя в правой части неравенства к нижней грани множества <tex>F</tex>, получаем искомое неравенство.
Пусть <tex>\omega \in \Omega</tex>. Тогда существует <tex>\omega^* \in \Omega^*</tex> такая, что <tex>\forall \lambda, t \ge 0</tex>
:<tex>\omega(\lambda t) \le \omega^* (\lambda t) \le (1 + \lambda) \omega(t)</tex>
|proof=
По св-ву 2 имеем <tex>\omega(\lambda t) \le (1 + \lambda) \omega (t)</tex> для всех <tex>\lambda</tex> и <tex>t \geq 0</tex>. Обозначим <tex>u = \lambda t</tex>, тогда <tex>\lambda = \frac ut</tex>.
 
Перепишем равенство : <tex>\omega(u) \le (1 + \frac ut) \omega (t)</tex>. Определим теперь функцию <tex>\omega^*(u) = \inf\limits_{t > 0} (1 + \frac ut)\omega(t)</tex>.
Рассмотрим семейство функций <tex> \tilde \omega(u)_t = (1 + \frac ut)\omega(t), t > 0</tex>. Каждая функция из этого семейства выпукла как линейная. Но тогда <tex>\omega^*(u)</tex> выпукла вверх по доказанному выше факту.
 
Докажем теперь, что <tex>\omega^*(u)</tex> - модуль непрерывности. Действительно,
#<tex>\omega^*</tex> выпукла вверх
#<tex>\omega^*(0) = \inf\limits_{t > 0}{\omega(t)} = 0</tex> (т. к. <tex>\lim \limits_{t \to +0} \,\omega(t) = 0</tex> )
#<tex>\omega^*</tex> не убывает. В самом деле, <tex>u_1 \leq u_2 \Rightarrow (1 + \frac{u_1}t)\omega(t) \leq (1 + \frac{u_2}t)\omega(t)</tex>. Переходя к инфимумам обеих частей последнего неравенства, получаем <tex>u_1 \leq u_2 \Rightarrow \omega^*(u_1) \leq \omega^*(u_2)</tex>.
 
Еще раз вспомним св-во № 2 модулей непрерывности : <tex>\omega(u) \le (1 + \frac ut) \omega (t)</tex>. Рассматривая точные нижние грани обеих частей и используя определение ф-ции <tex>\omega^*(u)</tex>, получим требуемые в условии теоремы неравенства (объяснение того, как именно эти неравенства получаются, довольно тяжело описать словами, поэтому лучше его проделать самому - прим. наборщика).
 
Итак, построенная нами функция <tex>\omega^*(t)</tex> является модулем непрерывности, выпукла вверх и удовлетворяет указанным в условии теореме неравенствам.
 
}}
 
[[Категория:Математический анализ 1 курс]]
Анонимный участник

Навигация