Монотонный код Грея — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
м
Строка 18: Строка 18:
 
для <tex>0 \leqslant i \leqslant n</tex>. Для всех уровней выполняется соотношение <tex>|V_n(i)| = C_n^i</tex>.
 
для <tex>0 \leqslant i \leqslant n</tex>. Для всех уровней выполняется соотношение <tex>|V_n(i)| = C_n^i</tex>.
  
Пусть <tex>Q_n(i)</tex> подграф <tex>Q_n</tex>, который является обединением двух смежных уровней, т. е. <tex>V_n(i) \cup V_n(i+1)</tex>, и пусть <tex>E_n(i)</tex> множество граней <tex>Q_n(i)</tex>.
+
Пусть <tex>Q_n(i)</tex> подграф <tex>Q_n</tex>, который является объединением двух смежных уровней, т. е. <tex>V_n(i) \cup V_n(i+1)</tex>, и пусть <tex>E_n(i)</tex> множество граней <tex>Q_n(i)</tex>.
 
Тогда монотонным кодом Грея будет являтся [[:Гамильтоновы_графы|Гамильтонов путь]] в <tex>Q_n</tex>, при котором любое множество вершин <tex>\delta_1 , \delta_2</tex> такие, что <tex>\forall i, j : i \leqslant j</tex>, то <tex>\delta_1 \in E_n(i)</tex> идет перед <tex>\delta_2 \in E_n(j)</tex>.
 
Тогда монотонным кодом Грея будет являтся [[:Гамильтоновы_графы|Гамильтонов путь]] в <tex>Q_n</tex>, при котором любое множество вершин <tex>\delta_1 , \delta_2</tex> такие, что <tex>\forall i, j : i \leqslant j</tex>, то <tex>\delta_1 \in E_n(i)</tex> идет перед <tex>\delta_2 \in E_n(j)</tex>.
  
 
Ниже на катринке Гамильтонов путь в гиперкубе <tex>Q_4</tex> для <tex>n = 4</tex>, построенный по алгоритму Саважа-Винклера (англ. ''Savage-Winkler'').<ref>[http://www.sciencedirect.com/science/article/pii/0097316595900918 C. D Savage and P. Winkler (1995). "Monotone Gray codes and the middle levels problem"page 14]</ref>
 
Ниже на катринке Гамильтонов путь в гиперкубе <tex>Q_4</tex> для <tex>n = 4</tex>, построенный по алгоритму Саважа-Винклера (англ. ''Savage-Winkler'').<ref>[http://www.sciencedirect.com/science/article/pii/0097316595900918 C. D Savage and P. Winkler (1995). "Monotone Gray codes and the middle levels problem"page 14]</ref>
  
[[Файл:Monotonic_Gray_Code_Graph.png|center|4-ичный монотооный код Грея]]
+
[[Файл:Monotonic_Gray_Code_Graph.png|center|4-ичный монотонный код Грея]]
  
Элегантная идея построения <tex>n</tex>-ичного монотонного кода Грея состоит в том, чтобы рекурсивно строить подпути <tex>P_{n,j}</tex> длинны <tex>2 \binom{n}{j}</tex> включающих вершины <tex>E_n(j)</tex>.
+
Элегантная идея построения <tex>n</tex>-ичного монотонного кода Грея состоит в том, чтобы рекурсивно строить подпути <tex>P_{n,j}</tex> длинны <tex>2C_n^j</tex> включающих вершины <tex>E_n(j)</tex>.
  
Определим <tex>P_{1,0} = (0, 1)</tex> и <tex>P_{n,j} = \emptyset</tex>, когда <tex>j < 0</tex> или <tex>j \geq n</tex> и  
+
Определим <tex>P_{1,0} = (0, 1)</tex> и <tex>P_{n,j} = \emptyset</tex>, когда <tex>j < 0</tex> или <tex>j \geqslant n</tex> и  
 
<tex>
 
<tex>
 
P_{n+1,j} = 1P^{\pi_n}_{n,j-1}, 0P_{n,j}
 
P_{n+1,j} = 1P^{\pi_n}_{n,j-1}, 0P_{n,j}
</tex>.
+
</tex>. То есть P_{n+1, j} это объединение множеств P^{\pi_n}_{n,j-1} с приписанной в начале 1 и P_{n,j} с приписанными в начале нулем.
  
 
Здесь <tex>\pi_n</tex> это определенная перестановка элементов множества к которому она применена, а <tex>P^{\pi}</tex> это путь <tex>P</tex> к котрому была применена пересатновка  <tex>\pi</tex>.
 
Здесь <tex>\pi_n</tex> это определенная перестановка элементов множества к которому она применена, а <tex>P^{\pi}</tex> это путь <tex>P</tex> к котрому была применена пересатновка  <tex>\pi</tex>.
Существует два варианта построить моготонный код грея по путям <tex>P_{n, j}</tex>.  
+
Существует два варианта построить монотонный код грея по путям <tex>P_{n, j}</tex>.  
  
 
Назовем их <tex>G_n^{(1)}</tex> и <tex>G_n^{(2)}</tex>. Будем строить их таким образом:  
 
Назовем их <tex>G_n^{(1)}</tex> и <tex>G_n^{(2)}</tex>. Будем строить их таким образом:  

Версия 22:57, 6 декабря 2016

Определение:
Монотонный код Грея (англ. Monotonic Gray Code) — способ построения кода Грея, при котором [math]\nexists[/math] [math]g_i, g_j[/math], что [math]g_i[/math] содержит на [math]2[/math] или больше единиц, чем [math]g_j[/math].

Монотонный код Грея преимущественно используется в теории связанных сетей, например для минимизации ожидания линейным массивом процессоров.[1]

Алгоритм построения

Для начала определим такое понятие, как вес двоичного кода, им будет являтся количество [math]1[/math] в данном двоичном коде. Очевидно, что нельзя построить код Грея в котором бы вес всегда возрастал. Неплохим решением этой проблемы будет обход всех кодов со смежными с данным весами.

Мы можем формализовать модель монотонных кодов Грея рассматривая разбиение гиперкуба [math]Q_n = (V_n, E_n)[/math], вершины в котором являются двоичными кодами, на уровни с одинаковым весом вершин.

[math] V_n(i) = \{ v \mid v \text{ has weight } i \} [/math]

для [math]0 \leqslant i \leqslant n[/math]. Для всех уровней выполняется соотношение [math]|V_n(i)| = C_n^i[/math].

Пусть [math]Q_n(i)[/math] подграф [math]Q_n[/math], который является объединением двух смежных уровней, т. е. [math]V_n(i) \cup V_n(i+1)[/math], и пусть [math]E_n(i)[/math] множество граней [math]Q_n(i)[/math]. Тогда монотонным кодом Грея будет являтся Гамильтонов путь в [math]Q_n[/math], при котором любое множество вершин [math]\delta_1 , \delta_2[/math] такие, что [math]\forall i, j : i \leqslant j[/math], то [math]\delta_1 \in E_n(i)[/math] идет перед [math]\delta_2 \in E_n(j)[/math].

Ниже на катринке Гамильтонов путь в гиперкубе [math]Q_4[/math] для [math]n = 4[/math], построенный по алгоритму Саважа-Винклера (англ. Savage-Winkler).[2]

4-ичный монотонный код Грея

Элегантная идея построения [math]n[/math]-ичного монотонного кода Грея состоит в том, чтобы рекурсивно строить подпути [math]P_{n,j}[/math] длинны [math]2C_n^j[/math] включающих вершины [math]E_n(j)[/math].

Определим [math]P_{1,0} = (0, 1)[/math] и [math]P_{n,j} = \emptyset[/math], когда [math]j \lt 0[/math] или [math]j \geqslant n[/math] и [math] P_{n+1,j} = 1P^{\pi_n}_{n,j-1}, 0P_{n,j} [/math]. То есть P_{n+1, j} это объединение множеств P^{\pi_n}_{n,j-1} с приписанной в начале 1 и P_{n,j} с приписанными в начале нулем.

Здесь [math]\pi_n[/math] это определенная перестановка элементов множества к которому она применена, а [math]P^{\pi}[/math] это путь [math]P[/math] к котрому была применена пересатновка [math]\pi[/math]. Существует два варианта построить монотонный код грея по путям [math]P_{n, j}[/math].

Назовем их [math]G_n^{(1)}[/math] и [math]G_n^{(2)}[/math]. Будем строить их таким образом: [math] G_n^{(1)} = P_{n,0} P_{n,1}^R P_{n,2} P_{n,3}^R \ldots \text{, } G_n^{(2)} = P_{n,0}^R P_{n,1} P_{n,2}^R P_{n,3} \ldots [/math]

Выбор перестановки [math]\pi_n[/math] обусловлен тем, чтобы получившиеся коды соответсвовали требованиям кода Грея и поэтому эта перестановка равна [math]\pi_n = E^{-1}(\pi_{n-1}^2)[/math].

Чтобы лучше разобратся в том, как сторится этот код и работает перестановка [math]\pi[/math] следует рассмотреть таблицу ниже.

Подпути алгоритма Саважа-Винклера
[math]P_{n,j}[/math] [math]j = 0[/math] [math]j = 1[/math] [math]j = 2[/math] [math]j = 3[/math]
[math]n = 1[/math] [math]0, 1[/math]
[math]n = 2[/math] [math]00, 01[/math] [math]10, 11[/math]
[math]n = 3[/math] [math]000, 001[/math] [math]100, 110, 010, 011[/math] [math]101, 111[/math]
[math]n = 4[/math] [math]0000, 0001[/math] [math]1000, 1100, 0100, 0110, 0010, 0011[/math] [math]1010, 1011, 1001, 1101, 0101, 0111[/math] [math]1110, 1111[/math]

Монотонный код Грея может быть эффективно сгенерирован по этому алгоритму за время [math]O(n)[/math]. Легче всего написать этот алгоритм используя сопрограмму.

Псевдокод

rotateRight(x, n): // Вспомогательная функция для генерации перестановки, циклически сдвигает битовый вектор направо [math]n[/math] раз. Принимает и возвращает котреж (англ. tuple). Кортеж аналог списка, но в кортеже нельзя менять элементы, можно только добавлять.
   return x[-n:] + x[:-n]
pi(n): // Рекурсивная генерация [math]n[/math]-ой перестановки. Возвращает перестановку в виде кортежа. Если n становится меньше [math]2[/math] дописывает в начало кортежа [math]0[/math] и возвращает его.
   if n <= 1:
       return (0,)
   x = pi(n - 1) + (n - 1,)
   return rotate_right(tuple(x[k] for k in x), 1)
p(n, j, reverse = false): // Рекурсивная генерация пути [math]P_{n, j}[/math]. Принимает [math]n, j[/math], а так же дополнительный параметр определяющий надо-ли переворачивать кортеж.
   if n == 1 and j == 0:
       if not reverse:
           yield (0,)
           yield (1,)
       else:
           yield (1,)
           yield (0,)
   elif j >= 0 and j < n:
       perm = pi(n - 1)
       if not reverse:
           for x in p(n - 1, j - 1):
               yield (1,) + tuple(x[k] for k in perm)
           for x in p(n - 1, j):
               yield (0,) + x
       else:
           for x in p(n - 1, j, reverse=True):
               yield (0,) + x
           for x in p(n - 1, j - 1, reverse=True):
               yield (1,) + tuple(x[k] for k in perm) 
monotonic(n): // Генерация монотонного кода Грея при помощи уже написанной сопрограммы p.
   for i in range(n):
       for x in (p(n, i) if i % 2 == 0 else p(n, i, reverse=True)):
           yield x

Визуализация работы алгоритма

Для [math]n = 5[/math]

Визуализация работы алгоритма для 5-ичного кода

Для [math]n = 6[/math]

Визуализация работы алгоритма для 6-ичного кода

См. Также

Примечания

Источники информации