Мощность множества — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(не показано 19 промежуточных версий 5 участников)
Строка 1: Строка 1:
Лекция от 20 сентября 2010.
+
[[Категория:Математический анализ 1 курс]]
  
 
== Определения ==
 
== Определения ==
Строка 5: Строка 5:
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
Если А и В {{---}} произвольные множества, и между ними можно установить биекцию, что они '''равномощны''': <tex> |A| = |B| </tex>
+
Если А и В {{---}} произвольные множества, и между ними можно установить биекцию, то они '''равномощны''': <tex> |A| = |B| </tex>
 
}}
 
}}
  
[[Множества|Множество]] называется ''конечным'', если его элементы можно пересчитать, иначе его оно называется ''бесконечным''.
+
{{Определение
 +
|definition=
 +
[[Множества|Множество]] называется ''конечным'', если его элементы можно пересчитать, иначе оно называется ''бесконечным''.
 +
}}
  
 
{{Определение
 
{{Определение
Строка 15: Строка 18:
 
}}
 
}}
  
<tex> A = \{a_1, a_2, ... , a_n \} </tex> - счетное множество.
+
<tex> A = \{a_1, a_2, \dots , a_n \dots \} </tex> {{---}}  счетное множество.
  
 
Мощность счетных множеств минимальна по сравнению с другими бесконечными множествами.
 
Мощность счетных множеств минимальна по сравнению с другими бесконечными множествами.
 +
 +
== Мощность Q ==
  
 
{{Утверждение
 
{{Утверждение
Строка 25: Строка 30:
 
<tex> B \subset A </tex>
 
<tex> B \subset A </tex>
  
<tex> a_1 \in A \Rightarrow A \backslash \{ a_1 \} = A_1 </tex> - бесконечное множество.
+
<tex> a_1 \in A \Rightarrow A \backslash \{ a_1 \} = A_1 </tex> {{---}} бесконечное множество.
  
<tex> a_2 \in A_1 \Rightarrow A_1 \backslash \{ a_2 \} = A_2 </tex> - также бесконечное множество.
+
<tex> a_2 \in A_1 \Rightarrow A_1 \backslash \{ a_2 \} = A_2 </tex> {{---}}  также бесконечное множество.
  
Продолжаем этот процесс далее, пока не останется <tex> B \subset A </tex> - счетное множество. {{TODO|t=(ЩИТО? У кого есть что-нибудь адекватное насчет этого, исправьте, пожалуйста.)}}
+
Продолжаем этот процесс далее до бесконечности. Тогда мы получим <tex> B = \{a_1, a_2, \dots , a_n \dots  \} \subset A </tex> {{---}} счетное множество.
 
}}
 
}}
  
Если <tex> \{ a_1, a_2, ... , a_n, ... \} </tex> - совокупность попарно различных элементов, то это - счетное множество.
+
Если <tex> \{ a_1, a_2, ... , a_n, ... \} </tex> {{---}}  совокупность попарно различных элементов, то это {{---}} счетное множество.
  
Для счетных множеств часто применяется следующий факт:
+
Для счетных множеств часто применяется следующий важный факт:
 
{{Утверждение
 
{{Утверждение
 
|statement=
 
|statement=
Не более чем счетное объединение не более, чем счетных множеств, не более, чем счетно:
+
Не более чем счетное объединение не более, чем счетных множеств, не более, чем счетно, то есть, другими словами:
  
Пусть <tex> A_n </tex>  {{---}}  счетное/конечное множество.
+
Если все <tex> A_n </tex>  {{---}}  счетное/конечное множество, то <tex>\ \ | \bigcup\limits_n A_n | = |\mathbb N| </tex>
  
Тогда: <tex> | \bigcup\limits_n A_n | = |\mathbb N| </tex>
+
|proof=
  
|proof=
+
Выпишем все элементы этих множеств в таблицу:
 +
 
 +
<tex>\ ||a^i_j||</tex>, где <tex>\ a^i_j \in A_i,\ i, j \in \mathbb N </tex>
  
<tex> A_n = \{ a_{n1}, a_{n2}, ... \} </tex>.
+
<tex>
 +
\begin{pmatrix}  
 +
a^1_1 & a^1_2 & a^1_3 & \cdots \\ \\
 +
a^2_1 & a^2_2 & a^2_3 & \cdots \\ \\
 +
a^3_1 & a^3_2 & a^3_3 & \cdots \\ \\
 +
\vdots &\vdots &\vdots &\ddots
 +
\end{pmatrix} </tex>
  
{{TODO|t= А вот тут должна какая-то биекция, доказывающая это утверждение.}}
+
Будем нумеровать их по диагоналям:
 +
<tex>
 +
\begin{pmatrix}
 +
1    & 2    & 3    & 4    & 5    & 6    & 7      \\
 +
a^1_1 & a^2_1 & a^1_2 & a^3_1 & a^2_2 & a^1_3 & \cdots
 +
\end{pmatrix} </tex>
  
<tex> \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots \\ a_{21} & a_{22} & \cdots \\ a_{31} & \cdots \\ \cdots \end{pmatrix} </tex>
+
Таким образом мы установили биекцию между <tex>\mathbb N  </tex> и  <tex>\ \bigcup\limits_n A_n  </tex>, то есть <tex>\ \ | \bigcup\limits_n A_n | = |\mathbb N| </tex> , что и требовалось доказать.
 
}}
 
}}
 +
 +
В частности, множество рациональных чисел <tex> \mathbb Q </tex>  {{---}}  счетно.
 +
 +
== Континуум ==
  
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
<tex> Множество I = [0, 1] </tex> называется ''континииумом''.
+
Множество <tex> I = [0, 1]</tex> называется ''континуумом''.
 
}}
 
}}
  
Строка 63: Строка 85:
 
Будем доказывать от противного. Применим принцип вложенных отрезков:
 
Будем доказывать от противного. Применим принцип вложенных отрезков:
  
Пусть <tex> I = \{ x_1, x_2, ... , x_n \} </tex>
+
Пусть <tex> I = \{ x_1, x_2, ... , x_n, ... \} </tex>
  
 
Разделим I на 3 части и назовем <tex> \Delta_1 : x_1 \notin \Delta_1 </tex>. Такой отрезок всегда существует.
 
Разделим I на 3 части и назовем <tex> \Delta_1 : x_1 \notin \Delta_1 </tex>. Такой отрезок всегда существует.
Строка 84: Строка 106:
  
 
Если <tex> |A| = |I| </tex>, то обычно говорят, что А ''обладает мощностью континиума'':
 
Если <tex> |A| = |I| </tex>, то обычно говорят, что А ''обладает мощностью континиума'':
 +
 +
== Мощность R ==
  
 
{{Утверждение
 
{{Утверждение
Строка 95: Строка 119:
 
Биекцию между множествами <tex> (0, 1) </tex> и <tex> ( -\frac{\pi}{2}, \frac{\pi}{2} ) </tex> можно установить параллельным переносом и сжатием:
 
Биекцию между множествами <tex> (0, 1) </tex> и <tex> ( -\frac{\pi}{2}, \frac{\pi}{2} ) </tex> можно установить параллельным переносом и сжатием:
  
<tex> x \leftrightarrow (x * \pi) - \frac {\pi}{2} </tex>
+
<tex> x \leftrightarrow (x \cdot \pi) - \frac {\pi}{2} </tex>
  
 
Получили, что <tex> |\mathbb R| = | ( -\frac{\pi}{2}, \frac{\pi}{2} ) | = | (0, 1) | </tex>.
 
Получили, что <tex> |\mathbb R| = | ( -\frac{\pi}{2}, \frac{\pi}{2} ) | = | (0, 1) | </tex>.
Строка 109: Строка 133:
 
Определим множество <tex> B = A \cup \{ 0, 1 \} </tex>. Множество <tex> B </tex> также счетное.
 
Определим множество <tex> B = A \cup \{ 0, 1 \} </tex>. Множество <tex> B </tex> также счетное.
  
Между счетными множествами можно установить биекцию: <tex> B \leftrightarrow A \Rightarrow (0, 1) \backslash A = [0, 1] \backslash B  
+
Между счетными множествами можно установить биекцию: <tex> B \leftrightarrow A \Rightarrow (0, 1) \backslash A \leftrightarrow [0, 1] \backslash B  
\Rightarrow (0, 1) = [0, 1] \Rightarrow |(0, 1)| = |[0, 1]| </tex>
+
\Rightarrow (0, 1) \leftrightarrow [0, 1] \Rightarrow |(0, 1)| = |[0, 1]| </tex>
  
 
В итоге получили, что <tex> |\mathbb R| = |[0, 1]| </tex>
 
В итоге получили, что <tex> |\mathbb R| = |[0, 1]| </tex>
Строка 116: Строка 140:
 
}}
 
}}
  
<tex> \mathbb Q </tex>  {{---}}  счетно.
+
Так как <tex> \mathbb Q </tex>  {{---}}  счетно. <tex> |\mathbb R \backslash \mathbb Q| = |I| \Rightarrow </tex> иррациональных чисел по мощности континииум.
 
 
<tex> |\mathbb R \backslash \mathbb Q| = |I| \Rightarrow </tex> иррациональных чисел по мощности континииум.
 
 
[[Категория:Математический анализ 1 курс]]
 

Версия 07:09, 31 марта 2021


Определения

Определение:
Если А и В — произвольные множества, и между ними можно установить биекцию, то они равномощны: [math] |A| = |B| [/math]


Определение:
Множество называется конечным, если его элементы можно пересчитать, иначе оно называется бесконечным.


Определение:
Если [math] |A| = |\mathbb N| [/math], то A называется счетным множеством.


[math] A = \{a_1, a_2, \dots , a_n \dots \} [/math] — счетное множество.

Мощность счетных множеств минимальна по сравнению с другими бесконечными множествами.

Мощность Q

Утверждение:
Если А - бесконечное множество, то в нем содержится по меньшей мере одно счетное подмножество.
[math]\triangleright[/math]

[math] B \subset A [/math]

[math] a_1 \in A \Rightarrow A \backslash \{ a_1 \} = A_1 [/math] — бесконечное множество.

[math] a_2 \in A_1 \Rightarrow A_1 \backslash \{ a_2 \} = A_2 [/math] — также бесконечное множество.

Продолжаем этот процесс далее до бесконечности. Тогда мы получим [math] B = \{a_1, a_2, \dots , a_n \dots \} \subset A [/math] — счетное множество.
[math]\triangleleft[/math]

Если [math] \{ a_1, a_2, ... , a_n, ... \} [/math] — совокупность попарно различных элементов, то это — счетное множество.

Для счетных множеств часто применяется следующий важный факт:

Утверждение:
Не более чем счетное объединение не более, чем счетных множеств, не более, чем счетно, то есть, другими словами: Если все [math] A_n [/math] — счетное/конечное множество, то [math]\ \ | \bigcup\limits_n A_n | = |\mathbb N| [/math]
[math]\triangleright[/math]

Выпишем все элементы этих множеств в таблицу:

[math]\ ||a^i_j||[/math], где [math]\ a^i_j \in A_i,\ i, j \in \mathbb N [/math]

[math] \begin{pmatrix} a^1_1 & a^1_2 & a^1_3 & \cdots \\ \\ a^2_1 & a^2_2 & a^2_3 & \cdots \\ \\ a^3_1 & a^3_2 & a^3_3 & \cdots \\ \\ \vdots &\vdots &\vdots &\ddots \end{pmatrix} [/math]

Будем нумеровать их по диагоналям: [math] \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ a^1_1 & a^2_1 & a^1_2 & a^3_1 & a^2_2 & a^1_3 & \cdots \end{pmatrix} [/math]

Таким образом мы установили биекцию между [math]\mathbb N [/math] и [math]\ \bigcup\limits_n A_n [/math], то есть [math]\ \ | \bigcup\limits_n A_n | = |\mathbb N| [/math] , что и требовалось доказать.
[math]\triangleleft[/math]

В частности, множество рациональных чисел [math] \mathbb Q [/math] — счетно.

Континуум

Определение:
Множество [math] I = [0, 1][/math] называется континуумом.


Утверждение:
[math] I [/math] — несчетное множество.
[math]\triangleright[/math]

Будем доказывать от противного. Применим принцип вложенных отрезков:

Пусть [math] I = \{ x_1, x_2, ... , x_n, ... \} [/math]

Разделим I на 3 части и назовем [math] \Delta_1 : x_1 \notin \Delta_1 [/math]. Такой отрезок всегда существует.

Далее разобьем [math] \Delta_1 [/math] на 3 части. Назовем [math] \Delta_2 [/math] тот отрезок, который не содержит [math] x_2 [/math], и так далее..

В результате выстраивается система вложенных отрезков:

[math] \{ \Delta_n : \Delta_{n+1} \subset \Delta_n, x_n \notin \Delta_n \} [/math]

По свойству системы вложенных отрезков:

[math] \exists d = \bigcap\limits_{n=1}^{\infty} \Delta_n [/math]

[math] d \in I [/math]. Пусть теперь [math] d \in \{ x_i \} \Rightarrow d = x_{n_0} [/math].

По построению: [math] d = x_{n_0} \notin \Delta_{n_0} [/math], но [math] d \in \bigcap\limits_{n=1}^{\infty} \Delta_n \Rightarrow d \in \Delta_{n_0} [/math], противоречие.
[math]\triangleleft[/math]

Если [math] |A| = |I| [/math], то обычно говорят, что А обладает мощностью континиума:

Мощность R

Утверждение:
[math] |\mathbb R| = |I| [/math]
[math]\triangleright[/math]

Рассмотрим функцию [math] y = tg \, x, x \in ( -\frac{\pi}{2}, \frac{\pi}{2} ) [/math]

С ее помощью можно установить биекцию между множествами [math] \mathbb R [/math] и [math] ( -\frac{\pi}{2}, \frac{\pi}{2} ) [/math].

Биекцию между множествами [math] (0, 1) [/math] и [math] ( -\frac{\pi}{2}, \frac{\pi}{2} ) [/math] можно установить параллельным переносом и сжатием:

[math] x \leftrightarrow (x \cdot \pi) - \frac {\pi}{2} [/math]

Получили, что [math] |\mathbb R| = | ( -\frac{\pi}{2}, \frac{\pi}{2} ) | = | (0, 1) | [/math].

Осталось доказать, что [math] |(0, 1)| = |[0, 1]| [/math].

Применим следующий прием:

Пусть [math] a_1, a_2, ... , a_n, ... \in (0, 1) [/math] - попарно различны.

Множество [math] A = \{ a_1, a_2, ... , a_n, ... \} [/math] - счетное.

Определим множество [math] B = A \cup \{ 0, 1 \} [/math]. Множество [math] B [/math] также счетное.

Между счетными множествами можно установить биекцию: [math] B \leftrightarrow A \Rightarrow (0, 1) \backslash A \leftrightarrow [0, 1] \backslash B \Rightarrow (0, 1) \leftrightarrow [0, 1] \Rightarrow |(0, 1)| = |[0, 1]| [/math]

В итоге получили, что [math] |\mathbb R| = |[0, 1]| [/math]
[math]\triangleleft[/math]

Так как [math] \mathbb Q [/math] — счетно. [math] |\mathbb R \backslash \mathbb Q| = |I| \Rightarrow [/math] иррациональных чисел по мощности континииум.