Редактирование: Наилучшее приближение в линейных нормированных пространствах

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 88: Строка 88:
 
Пусть <tex>\overline{\alpha}^{(m)} \to \overline{\alpha}</tex>, <tex>\overline{\alpha}^{(m)} \in T</tex>, так как сходимость покоординатная, то <tex>\alpha^{(m)}_k \to \alpha_k</tex> для <tex>k = \overline{1,n}</tex>.  
 
Пусть <tex>\overline{\alpha}^{(m)} \to \overline{\alpha}</tex>, <tex>\overline{\alpha}^{(m)} \in T</tex>, так как сходимость покоординатная, то <tex>\alpha^{(m)}_k \to \alpha_k</tex> для <tex>k = \overline{1,n}</tex>.  
  
Если <tex>\|\sum\limits_{k=1}^{n}\alpha^{(m)}_ke_k\| \to \|\sum\limits_{k=1}^{n}\alpha_k e_k\|</tex>, то, так как <tex>\|\sum\limits_{k=1}^{n}\alpha^{(m)}_k e_k\|\le M + \|x\|</tex>, предел нормы ограничен этим же значением, тогда <tex>\overline{\alpha}\in T</tex>, и <tex>T</tex> замкнуто.
+
Если <tex>\|\sum\limits_{k=1}^{n}\alpha^{(m)}_ke_k\| \to \|\sum\limits_{k=1}^{n}\alpha_k e_k\|</tex>, то, так как <tex>\|\sum\limits_{k=1}^{n}\alpha_k e_k\|\le M + \|x\|</tex>, предел нормы ограничен этим же значением, тогда <tex>\overline{\alpha}\in T</tex>, и <tex>T</tex> замкнуто.
  
 
<tex>|\|\sum\limits_{k=1}^{n}\alpha^{(m)}_ke_k\|-\|\sum\limits_{k=1}^{n}\alpha_k e_k\|| \le \|\sum\limits_{k=1}^{n}\alpha^{(m)}_ke_k-\sum\limits_{k=1}^{n}\alpha_ke_k\|=\|\sum\limits_{k=1}^{n}(\alpha^{(m)}_k-\alpha_k)e_k\| \le </tex>
 
<tex>|\|\sum\limits_{k=1}^{n}\alpha^{(m)}_ke_k\|-\|\sum\limits_{k=1}^{n}\alpha_k e_k\|| \le \|\sum\limits_{k=1}^{n}\alpha^{(m)}_ke_k-\sum\limits_{k=1}^{n}\alpha_ke_k\|=\|\sum\limits_{k=1}^{n}(\alpha^{(m)}_k-\alpha_k)e_k\| \le </tex>

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)