Редактирование: Натуральные числа

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 62: Строка 62:
  
 
===Умножение===
 
===Умножение===
Воспользуемся определением натуральных чисел <tex>\mathbb{N}</tex> как классов эквивалентности конечных множеств. Обозначим классы эквивалентности конечных множеств <tex>C,\A,\B\</tex> порождённых биекциями, с помощью скобок: <tex>[C], [A], [B].</tex> Тогда арифметическая операция '''умножение''' определяется следующим образом:
+
Воспользуемся определением натуральных чисел <tex>\mathbb{N}</tex> как классов эквивалентности конечных множеств. Обозначим классы эквивалентности конечных множеств <tex>C,\A,\B\</tex> порождённых биекциями, с помощью скобок: <tex>[C], [A], [B]</tex>. Тогда арифметическая операция '''умножение''' определяется следующим образом:
 
<tex>[C] = [A] \cdot [B] = [A \times B];\</tex>
 
<tex>[C] = [A] \cdot [B] = [A \times B];\</tex>
 
где: <tex>A \times B={(a,\ b)  \mid  a \in A,\ b \in B}\</tex> прямое произведение множеств — множество <tex>C,</tex> элементами которого являются упорядоченные пары <tex>(a,\ b)</tex> для всевозможных  <tex>a \in A,\ b \in B</tex>. Данная операция на классах введена корректно, то есть не зависит от выбора элементов классов, и совпадает с индуктивным определением.
 
где: <tex>A \times B={(a,\ b)  \mid  a \in A,\ b \in B}\</tex> прямое произведение множеств — множество <tex>C,</tex> элементами которого являются упорядоченные пары <tex>(a,\ b)</tex> для всевозможных  <tex>a \in A,\ b \in B</tex>. Данная операция на классах введена корректно, то есть не зависит от выбора элементов классов, и совпадает с индуктивным определением.

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)