Редактирование: Нахождение количества разбиений числа на слагаемые

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 31: Строка 31:
 
</p>
 
</p>
  
Заметим, что нам не нужно считать количество слагаемых <tex>m</tex> в разбиении. Достаточно посчитать <tex>P(n, k)</tex> — количество разбиений числа <tex>n</tex> на произвольное количество слагаемых, каждое из которых не больше <tex>k</tex>. Рассмотрим множество таких разбиений. Разделим его на две непересекающиеся группы. В первую войдут те разбиения, в которых отсутствует слагаемое <tex>k</tex>. Очевидно, таких разбиений <tex>P(n, k - 1)</tex>. Во второй группе — те разбиения, в которые слагаемое <tex>k</tex> вошло. Их количество совпадает с количеством разбиений числа <tex>n - k</tex> на слагаемые, каждое из которых не превосходит <tex>k</tex>, и равно <tex>P(n - k, k)</tex>.  
+
Заметим, что нам не нужно считать количество слагаемых <tex>m</tex> в разбиении. Достаточно посчитать <tex>P(n, k)</tex> — количество разбиений числа <tex>n</tex> на произвольное количество слагаемых, каждое из которых не больше <tex>k</tex>. Рассмотрим множество таких разбиений. Разделим его на две не пересекающиеся группы. В первую войдут те разбиения, в которых отсутствует слагаемое <tex>k</tex>. Очевидно, таких разбиений <tex>P(n, k - 1)</tex>. Во второй группе — те разбиения, в которые слагаемое <tex>k</tex> вошло. Их количество совпадает с количеством разбиений числа <tex>n - k</tex> на слагаемые, каждое из которых не превосходит <tex>k</tex>, и равно <tex>P(n - k, k)</tex>.  
  
 
Количество всех разбиений числа <tex>n</tex> равно <tex>P(n,n)</tex>. Асимптотика <tex>O(n^{2})</tex>.
 
Количество всех разбиений числа <tex>n</tex> равно <tex>P(n,n)</tex>. Асимптотика <tex>O(n^{2})</tex>.

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: