Неравенство Макмиллана — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Литература)
(Неравенство Макмиллана)
Строка 15: Строка 15:
 
{{Теорема
 
{{Теорема
 
|statement=
 
|statement=
  <tex> \sum\limits_{i = 1}^{I} 2^{-l_i} \le 1</tex> (где <tex>|A| = I</tex> , а <tex>l_i</tex> {{---}} длины кодовых слов) выполняется не только для любого префиксного кода, но и вообще для любого однозначного кода.
+
  <tex> \sum\limits_{i = 1}^{|A|} 2^{-l_i} \le 1</tex> (где <tex>l_i</tex> {{---}} длины кодовых слов) выполняется не только для любого префиксного кода, но и вообще для любого однозначного кода.
 
|proof=
 
|proof=
 
Есть разные способы решить эту задачу, но будет приведено простое и красивое, хотя и несколько загадочное, решение. <br />
 
Есть разные способы решить эту задачу, но будет приведено простое и красивое, хотя и несколько загадочное, решение. <br />
Строка 24: Строка 24:
 
Например, для кода со словами <tex>0,10,11</tex> (которые теперь записываются как <tex>a,ba,bb</tex>) и для <tex>N=2</tex> получаем <tex>(a+ba+bb)^2</tex><tex>=</tex>
 
Например, для кода со словами <tex>0,10,11</tex> (которые теперь записываются как <tex>a,ba,bb</tex>) и для <tex>N=2</tex> получаем <tex>(a+ba+bb)^2</tex><tex>=</tex>
  
<tex>=(a+ba+bb)*(a+ba+bb)=aa+aba+abb+baa+baba+babb+bba+bbba+bbbb.</tex> В этом примере все одночлены в правой части различны (если не переставлять переменные), и это не случайно: так будет для любого однозначного кода. В самом деле, по определению однозначности никакое слово не может быть получено двумя способами при соединении кодовых слов.
+
<tex>=(a+ba+bb)\times{(a+ba+bb)}=aa+aba+abb+baa+baba+babb+bba+bbba+bbbb.</tex> В этом примере все одночлены в правой части различны (если не переставлять переменные), и это не случайно: так будет для любого однозначного кода. В самом деле, по определению однозначности никакое слово не может быть получено двумя способами при соединении кодовых слов.
  
Теперь подставим <tex>a=b=\frac{1}{2}</tex> в наше неравенство (если оно верно для букв, то оно верно и для любых их числовых значений). Слева получится <tex>(2^{-n_1}+2^{-n_2}+...+2^{-n_i})^N</tex> (в скобке как раз выражение из неравенства Крафта{{---}}Макмиллана). Правую часть мы оценим сверху, сгруппировав слова по длинам: имеется не более <tex>2^l</tex> слагаемых длины <tex>l</tex>, каждое из которых равно <tex>2^{-l}</tex>, и потому слагаемые данной длины в сумме не превосходят единицы, а правая часть не превосходит максимальной длины слагаемых, то есть <tex>N*\max(n_i)</tex>. Итак, получаем, что <tex>(2^{-n_1}+2^{-n_2}+...+2^{-n_i})^N<N*\max(n_i)</tex> и это верно при любом <tex>N</tex>. Если основание степени в левой части больше единицы, то при больших <tex>N</tex> это неравенство нарушится (показательная функция растет быстрее линейной). Поэтому, для однозначного кода выполняется неравенство Крафта{{---}}Макмиллана. Что и требовалось доказать.
+
Теперь подставим <tex>a=b=\frac{1}{2}</tex> в наше неравенство (если оно верно для букв, то оно верно и для любых их числовых значений). Слева получится <tex>(2^{-n_1}+2^{-n_2}+...+2^{-n_i})^N</tex> (в скобке как раз выражение из неравенства Крафта{{---}}Макмиллана). Правую часть мы оценим сверху, сгруппировав слова по длинам: имеется не более <tex>2^l</tex> слагаемых длины <tex>l</tex>, каждое из которых равно <tex>2^{-l}</tex>, и потому слагаемые данной длины в сумме не превосходят единицы, а правая часть не превосходит максимальной длины слагаемых, то есть <tex>N\times{\max(n_i)}</tex>. Итак, получаем, что <tex>(2^{-n_1}+2^{-n_2}+...+2^{-n_i})^N<N\times{\max(n_i)}</tex> и это верно при любом <tex>N</tex>. Если основание степени в левой части больше единицы, то при больших <tex>N</tex> это неравенство нарушится (показательная функция растет быстрее линейной). Поэтому, для однозначного кода выполняется неравенство Крафта{{---}}Макмиллана. Что и требовалось доказать.
 
}}
 
}}
  

Версия 05:08, 31 октября 2011

Необходимые определения

Определение:
Пусть заданы два произвольных конечных множества, которые называются, соответственно, кодируемым алфавитом и кодирующим алфавитом. Их элементы называются символами, а строки (последовательности конечной длины) символов — словами. Длина слова — это число символов, из которого оно состоит.

В качестве кодирующего алфавита часто рассматривается множество [math]\{0, 1\}[/math] — так называемый двоичный или бинарный алфавит.


Определение:
Кодом для алфавита [math]A[/math] называется функция [math]C[/math], которая для каждого символа [math]x[/math] из [math]A[/math] указывает слово [math]C(x)[/math], кодирующее этот символ.


Определение:
Код называется однозначным, если никаким двум словам кодируемого алфавита не может быть сопоставлен один и тот же код..


Неравенство Макмиллана

Теорема:
[math] \sum\limits_{i = 1}^{|A|} 2^{-l_i} \le 1[/math] (где [math]l_i[/math] — длины кодовых слов) выполняется не только для любого префиксного кода, но и вообще для любого однозначного кода.
Доказательство:
[math]\triangleright[/math]

Есть разные способы решить эту задачу, но будет приведено простое и красивое, хотя и несколько загадочное, решение.
Пусть имеется однозначный код с [math]k[/math] кодовыми словами [math]P_1,P_2, ..., P_k[/math]. Необходимо доказать, что их длины [math]n_i=|P_i|[/math] удовлетворяют неравенству Крафта—Макмиллана.

Вместо нулей и единиц будем использовать [math]a[/math] и [math]b[/math] (из чего составлять коды разницы нет). Запишем формально сумму всех кодовых слов как алгебраическое выражение [math]P_1+P_2+...P_k[/math] (многочлен от [math]a[/math] и [math]b[/math], в котором одночлены записаны как произведения переменных [math]a[/math] и [math]b[/math], без возведения в степень). Теперь (ещё более странное на первый взгляд действие) возведём это в степень [math]N[/math] (произвольное натуральное число) и раскроем скобки, сохраняя порядок переменных (не собирая вместе одинаковые переменные) в одночленах: [math](P_1+P_2+...P_k)^N=[/math] сумма одночленов.

Например, для кода со словами [math]0,10,11[/math] (которые теперь записываются как [math]a,ba,bb[/math]) и для [math]N=2[/math] получаем [math](a+ba+bb)^2[/math][math]=[/math]

[math]=(a+ba+bb)\times{(a+ba+bb)}=aa+aba+abb+baa+baba+babb+bba+bbba+bbbb.[/math] В этом примере все одночлены в правой части различны (если не переставлять переменные), и это не случайно: так будет для любого однозначного кода. В самом деле, по определению однозначности никакое слово не может быть получено двумя способами при соединении кодовых слов.

Теперь подставим [math]a=b=\frac{1}{2}[/math] в наше неравенство (если оно верно для букв, то оно верно и для любых их числовых значений). Слева получится [math](2^{-n_1}+2^{-n_2}+...+2^{-n_i})^N[/math] (в скобке как раз выражение из неравенства Крафта—Макмиллана). Правую часть мы оценим сверху, сгруппировав слова по длинам: имеется не более [math]2^l[/math] слагаемых длины [math]l[/math], каждое из которых равно [math]2^{-l}[/math], и потому слагаемые данной длины в сумме не превосходят единицы, а правая часть не превосходит максимальной длины слагаемых, то есть [math]N\times{\max(n_i)}[/math]. Итак, получаем, что [math](2^{-n_1}+2^{-n_2}+...+2^{-n_i})^N\lt N\times{\max(n_i)}[/math] и это верно при любом [math]N[/math]. Если основание степени в левой части больше единицы, то при больших [math]N[/math] это неравенство нарушится (показательная функция растет быстрее линейной). Поэтому, для однозначного кода выполняется неравенство Крафта—Макмиллана. Что и требовалось доказать.
[math]\triangleleft[/math]

Ссылки

Неравенство Крафта

Литература

Шень А. Х. Программирование: теоремы и задачи. — М.: МЦНМО, 2011. С. 206 - 210. ISBN 978-5-94057-696-9