Изменения

Перейти к: навигация, поиск

Нормированные пространства (3 курс)

163 байта добавлено, 02:20, 1 января 2013
Нет описания правки
Рассмотрим единичный шар по норме $\| \|_2$: $S_2 = \{ \overline \alpha \mid \| \overline \alpha \|_2 = 1 \}$, $S_2$ является компактом в $\mathbb{R}^n$ (TODO: почему? может, [http://calvino.polito.it/~terzafac/Corsi/functional_analysis/pdf/chap3.pdf тут] есть подсказка).
Рассмотрим на нем функцию $f : S_2 \to \mathbb{R}$, $f(x) = \|x\| = \| \sum \alpha_i e_i \|$. TODO: доказатьПокажем, тчо $f$ что она непрерывна: $|f(\alpha_1 + \Delta \alpha_1 \dots \alpha_n + \Delta \alpha_n) - f(\alpha_1 \dots \alpha_n)| \le \sum |\Delta \alpha_k | \| e_k \| \le M \sqrt{\sum (\Delta \alpha_k )^2}$ TODO: бред какой-, тоесть при стремлении $\Delta \alpha_k $ к $0$, тут пытаемся доказать непрерывность расстояние между $f(\overline \alpha)$ и $f(\overline \alpha + \Delta \overline \alpha)$также стремится к нулю, что означает непрерывность.
Так как $f$ непрерывна на $S_2$, то по [[теореме Вейерштрасса]] она принимает минимум на этом компакте, равный $m$ (пусть он достигается в точке $\overline \alpha^*$). Также $f$ не может быть нулем на $S_2$: пусть для какого-то $x \in S_2$ это так, тогда тогда $\|x\| = 0 \Rightarrow \| \sum \alpha_k e_k \| = 0 \Rightarrow \alpha_k e_k = 0 \Rightarrow \forall k: \alpha_k = 0 \Rightarrow \|x\|_2 = 0$, что означает, что $x \notin S_2$, то есть $m > 0$.

Навигация