Редактирование: Обсуждение:Эргодическая марковская цепь

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 16: Строка 16:
 
: {{tick | ticked=1}} Повторяюсь, эти определения используются у тебя только внутри теоремы, и вообще не надо пихать этот формализм. Надо просто чтобы человек имел о них общее представление. К примеру, периодичное состояние на википедии определяется как «такое состояние цепи Маркова, которое навещается цепью только через промежутки времени, кратные фиксированному числу». Аналогично положительно возвратное состояние можно объяснить простым языком. Сделай что-то подобное. Не сможешь, так хотя бы внеси определения внутрь теоремы.--[[Участник:Dgerasimov|Дмитрий Герасимов]] 06:22, 26 декабря 2011 (MSK)
 
: {{tick | ticked=1}} Повторяюсь, эти определения используются у тебя только внутри теоремы, и вообще не надо пихать этот формализм. Надо просто чтобы человек имел о них общее представление. К примеру, периодичное состояние на википедии определяется как «такое состояние цепи Маркова, которое навещается цепью только через промежутки времени, кратные фиксированному числу». Аналогично положительно возвратное состояние можно объяснить простым языком. Сделай что-то подобное. Не сможешь, так хотя бы внеси определения внутрь теоремы.--[[Участник:Dgerasimov|Дмитрий Герасимов]] 06:22, 26 декабря 2011 (MSK)
  
: {{tick | ticked=1}} ВАЖНО: вообще почти вся работа уже сделана здесь [[Регулярная марковская цепь]], тут результат как бы обобщается на все эргодические цепи. Теорема, что тебе нужна, видимо, на странице 130 Кемени, Снелла. Также она прекрасно гуглится на английском. Вот так вот.
+
: {{tick}} ВАЖНО: вообще почти вся работа уже сделана здесь [[Регулярная марковская цепь]], тут результат как бы обобщается на все эргодические цепи. Теорема, что тебе нужна, видимо, на странице 130 Кемени, Снелла. Также она прекрасно гуглится на английском. Вот так вот.
:: мм, так там уже написаны обе теоремы из учебника, а я так понимаю они в моем конспекте тоже нужны, может быть на них ссылки сделать как-то?
 
::: Нет, там написаны теоремы для регулярных цепей, а тебе надо и для циклических. Я переструктурировал конспект и теперь надо только добавить сюда доказательство. Как раз-таки, эргодическая теорема для циклических цепей -- на стр. 129, и следствия тоже надо добавить. Должно получиться почти то же, что в конспекте про регулярные цепи. --[[Участник:Dgerasimov|Дмитрий Герасимов]] 22:51, 6 февраля 2012 (MSK)
 
:::: Вроде как все...
 
::::: Рассмотрим матрицу <tex>(kl + (1 - k)P)</tex> -- что такое <tex> l </tex>? P.S. Я понял -- это <tex> I </tex>. Ну блин, надо понимать, что пишешь :( --[[Участник:Dgerasimov|Дмитрий Герасимов]] 17:45, 7 февраля 2012 (MSK)
 
::::: Тут не написано что такое <tex> \xi </tex>, в Кемени, Снелле это вектор-столбец из единиц. --[[Участник:Dgerasimov|Дмитрий Герасимов]] 17:45, 7 февраля 2012 (MSK)
 
::::: И надо, наверное, сделать хотя бы внешнюю ссылку на определение суммируемости по Эйлеру, только чтобы там было адекватно написано и можно было понять. А то я не знаю что это такое, например :) --[[Участник:Dgerasimov|Дмитрий Герасимов]] 17:45, 7 февраля 2012 (MSK)
 
* Исправил. Про [http://en.wikipedia.org/wiki/Euler_summation суммируемость по Эйлеру] нашел на английской википедии, если внешнюю ссылку делать, то ее в конце статьи поместить в "Ссылки"?
 
  
 +
: {{tick}} Кстати, само определение эрг. распределения неочевидно немного, <tex>\lim\limits_{n \to \infty} p_{ij}^{(n)} = \pi_j </tex>, не сразу понятно, что это вероятность оказаться в jм состоянии выйдя из iго через n переходов.
 +
: {{tick}} Про необходимость дополнительного условия напиши сразу после условия \sum_i p_i = 1, потому что когда люди видят систему _n_ ур-й с _n_ неизвестными, в первую очередь они думают, что у нее есть одно решение, и, соответственно, дополнительное условие вызывает недоумение. И не «Из которой у нас может получиться», а оно действительно получится, и надо объяснить, почему(hint: все свободные члены равны 0).
 +
: {{tick}} Ты используешь обозначения p_ij и p_i. Такое ощущение что p_i — iя строка p. Такого ощущения быть не должно, назови эти p_i по-другому. Кстати, если посмотреть на теорему и на определение распеределения, ты должен использовать не p_i, а \pi_i
 +
: {{tick}} «Проверяя полученные решения на выполнение уравнения (2) получим, что система имеет единственное решение» — здесь надо написать «следующая теорема доказывает единственность решения».
  
: {{tick | ticked=1}} Кстати, само определение эрг. распределения неочевидно немного, <tex>\lim\limits_{n \to \infty} p_{ij}^{(n)} = \pi_j </tex>, не сразу понятно, что это вероятность оказаться в jм состоянии выйдя из iго через n переходов.
+
: {{tick}} Объяснить, почему отдельно рассматриваются эргодические цепи.
:: добавил определение эргодического распределения, так как видимо без него не обойтись
+
 
::: Не копипасть бред с википедии, ну пожаалуйста. Почему \pi_1, \pi_2, \dots ? У нас конечный вектор распределения, делай \pi_1 \dots \pi_n. "\forall i \in \mathbb N", как понимаешь, здесь тоже бред, так как \mathbb N -- множество всех натуральных чисел. --[[Участник:Dgerasimov|Дмитрий Герасимов]] 22:51, 6 февраля 2012 (MSK)
+
: {{tick}} написать про циклические классы, чтобы можно было отличать регулярные цепи от циклических.
::: А вот что такое p_{ij}^{(n)} теперь понятно, так как я добавил это в конспект про марковские цепи, но можешь оставить и тут, впринципе.
 
::: А вместо \pi используй лучше \alpha -- раз используешь Кемени, Снелла, используй те же обозначения. --[[Участник:Dgerasimov|Дмитрий Герасимов]] 22:51, 6 февраля 2012 (MSK)
 
: {{tick | ticked=1}} Про необходимость дополнительного условия напиши сразу после условия \sum_i p_i = 1, потому что когда люди видят систему _n_ ур-й с _n_ неизвестными, в первую очередь они думают, что у нее есть одно решение, и, соответственно, дополнительное условие вызывает недоумение. И не «Из которой у нас может получиться», а оно действительно получится, и надо объяснить, почему(hint: все свободные члены равны 0).
 
: {{tick | ticked=1}} Ты используешь обозначения p_ij и p_i. Такое ощущение что p_i — iя строка p. Такого ощущения быть не должно, назови эти p_i по-другому. Кстати, если посмотреть на теорему и на определение распеределения, ты должен использовать не p_i, а \pi_i
 
: {{tick | ticked=1}} «Проверяя полученные решения на выполнение уравнения (2) получим, что система имеет единственное решение» — здесь надо написать «следующая теорема доказывает единственность решения».
 
: {{tick | ticked=1}} Объяснить, почему отдельно рассматриваются эргодические цепи.
 
:: Сам запилил --[[Участник:Dgerasimov|Дмитрий Герасимов]] 22:51, 6 февраля 2012 (MSK)
 
: {{tick | ticked=1}} написать про циклические классы, чтобы можно было отличать регулярные цепи от циклических.  
 
 
:: Тогда получится, что регулярная цепь {{---}} просто цепь с периодом 1. Проблема заключается в том, что для циклических цепей предела стохастической матрицы в обычном смысле не существует, поэтому теоремы для регулярных цепей тут не работают.
 
:: Тогда получится, что регулярная цепь {{---}} просто цепь с периодом 1. Проблема заключается в том, что для циклических цепей предела стохастической матрицы в обычном смысле не существует, поэтому теоремы для регулярных цепей тут не работают.
::: Не знаю, стоит ли писать про то что период у сообщающихся состояний совпадает, про то, что это отношение эквивалентности и т.д. Возможно, есть смысле просто принять это на веру, так как там вроде какая-то хрень с теорией чисел.
 
: {{tick | ticked=1}} почему в примере у тебя распределение (0.5, 0.5)^T (вектор-столбец?), это же строка должна быть.
 
: {{tick | ticked=1}} А пример надо бы сделать циклической цепью, а не обычной регулярной, про регулярные цепи все уже написано.
 
:: Добавил. Но что-то очень мало...
 
::: Ну а на то он и самый простой пример. Я еще распределение в нем добавил. --[[Участник:Dgerasimov|Дмитрий Герасимов]] 00:54, 9 февраля 2012 (MSK)
 
 
: {{tick | ticked=1}} "Такая цепь является эргодической, так как существует эргодическое распределение" цепь является эргодической не потому что у нее есть распредаление. Просто надо написать, что у нее есть такое-то распределение.
 
  
 
== Замечания АС ==
 
== Замечания АС ==
 
:: {{tick | ticked=1}} "Тогда соответствующая этому эксперименту марковская цепь будет иметь 2 состояния" - что за цепь соответствует честной монете?
 
:: {{tick | ticked=1}} "Тогда соответствующая этому эксперименту марковская цепь будет иметь 2 состояния" - что за цепь соответствует честной монете?

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: