Обсуждение участника:MetaMockery — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Отношения между множествами)
(Операции)
Строка 47: Строка 47:
 
*: <tex>A</tex> и <tex>B</tex> не пересекаются <tex>{\displaystyle \Leftrightarrow \forall a\in A \ \colon a\notin B}</tex>
 
*: <tex>A</tex> и <tex>B</tex> не пересекаются <tex>{\displaystyle \Leftrightarrow \forall a\in A \ \colon a\notin B}</tex>
  
==Операции==
+
== Операции над множествами ==
  
# <tex> A \subset B </tex> (A является подмножеством B, каждый элемент из А также принадлежит В (<tex> \forall x: x \in A \Rightarrow x \in B </tex>));
+
==== Бинарные операции над множествами ====
# <tex> A \cap B </tex> (Пересечение множеств А и В: <tex> (x \in A) \wedge (x \in B) </tex>);
+
 
# <tex> A \cup B </tex> (Объединение множеств А и В: <tex> (x \in A) \vee (x \in B) </tex>);
+
* Пересечение <tex>A</tex> и <tex>B</tex>.
# <tex> B \backslash A </tex> (Разность множеств: <tex> (x \in B) \wedge (x \notin A) </tex>;
+
*: <tex>{\displaystyle A\cap B =\{x\mid x\in A\land x\in B\}}</tex>
# <tex> \varnothing </tex> {{---}} пустое множество:
+
 
#* <tex> A \cup  \varnothing = A </tex>
+
* Объединение <tex>A</tex> и <tex>B</tex>.
#* <tex> A \cap  \varnothing = \varnothing </tex>
+
*: <tex>{\displaystyle A\cup B =\{x\mid x\in A\lor x\in B\}}</tex>
#* <tex> \forall A: \varnothing \subseteq A </tex>
+
 
# <tex> \bigcup\limits_{\alpha\in W} A_\alpha</tex> {{---}} объединение нескольких множеств. В общем случае может состоять из бесконечного количества множеств:
+
* Разность <tex>A</tex> и <tex>B</tex>.
#* <tex> \bigcup\limits_{j \in N} A_j = A_1 \cup A_2 \cup </tex> ...
+
*: <tex>{\displaystyle A\setminus B =A\cap {\overline {B}}=\{x\mid x\in A\land x\notin B\}}</tex>
#* <tex> \bigcup\limits_{0 < x < 1} A_x </tex>
+
 
#* <tex> \bigcup\limits_{\alpha \in W} A_{\alpha} </tex>, и так далее..
+
* Симметрическая разность <tex>A</tex> и <tex>B</tex>.  
# <tex> A \cup B \cup C ... \subseteq U </tex> {{---}} &laquo;множество всего&raquo;, &laquo;универсальное множество&raquo;;
+
*: <tex> {\displaystyle A \bigtriangleup B \equiv A - B  = (A \cup B) \setminus (A \cap B) }</tex>
# <tex>\overline{A} = U </tex> \ <tex> A </tex> {{---}} дополнение множества А, дополнительное множество к А до U.
+
 
 +
==== Унарные операции над множествами ====
 +
 
 +
* Дополнение определяется следующим образом:
 +
*: <tex>{\displaystyle {{\overline {A}}\equiv A^{\complement }=\{x\mid x\notin A\}}=U\setminus A}</tex>.
  
 
== Теорема де Моргана ==
 
== Теорема де Моргана ==

Версия 00:44, 15 июня 2021

Определения

Определение:
Множество — первичное математическое понятие, которому не может быть дано строгое математическое определение. Представляет собой набор, совокупность каких-либо объектов, объединенных общим свойством.


Определение:
Объекты, из которых состоит множество, называют элементами этого множества. Если [math]a[/math] — элемент множества [math]A[/math], то записывают [math]a \in A[/math][math]a[/math] принадлежит [math]A[/math]»). Если [math]a[/math] не является элементом множества [math]A[/math], то записывают [math]a \notin A[/math][math]a[/math] не принадлежит [math]A[/math]»). В отличие от мультимножества каждый элемент множества уникален, и во множестве не может быть двух идентичных элементов.


Способы задания множеств

Существуют два основных способа задания множеств: перечисление и описание.

Перечисление

Первый способ состоит в том, что задаётся и перечисляется полный список элементов, входящих в множество.

[math] A = \{a_1, a_2 ..., a_n, ...\} [/math]

Данный способ удобно применять лишь к ограниченному числу конечных множеств.

Описание

Второй способ применяется, когда множество нельзя или затруднительно задать с помощью списка. В таком случае множества определяются свойствами их элементов.

[math] A = \{a: P\} [/math] , где [math]P[/math] — определенное свойство элемента [math]a[/math].

Отношения между множествами

Два множества [math]A[/math] и [math]B[/math] могут вступать друг с другом в различные отношения.

  • [math]A[/math] включено в [math]B[/math], если каждый элемент множества [math]A[/math] принадлежит также и множеству [math]B[/math] :
    [math]\displaystyle A\subseteq B\Leftrightarrow \forall a\in A \ \colon \ a\in B[/math]
  • [math]A[/math] включает [math]B[/math], если [math]B[/math] включено в [math]A[/math]:
    [math]{\displaystyle A\supseteq B\Leftrightarrow B\subseteq A}[/math]
  • [math]A[/math] равно [math]B[/math], если [math]A[/math] и [math]B[/math] включены друг в друга:
    [math]{\displaystyle A=B\Leftrightarrow (A\subseteq B)\land (B\subseteq A)}[/math]
  • [math]A[/math] строго включено в [math]B[/math], если [math]A[/math] включено в [math]B[/math], но не равно ему:
    [math]{\displaystyle A\subset B\Leftrightarrow (A\subseteq B)\land (A\neq B)}[/math]
  • [math]A[/math] и [math]B[/math] не пересекаются, если у них нет общих элементов:
    [math]A[/math] и [math]B[/math] не пересекаются [math]{\displaystyle \Leftrightarrow \forall a\in A \ \colon a\notin B}[/math]

Операции над множествами

Бинарные операции над множествами

  • Пересечение [math]A[/math] и [math]B[/math].
    [math]{\displaystyle A\cap B =\{x\mid x\in A\land x\in B\}}[/math]
  • Объединение [math]A[/math] и [math]B[/math].
    [math]{\displaystyle A\cup B =\{x\mid x\in A\lor x\in B\}}[/math]
  • Разность [math]A[/math] и [math]B[/math].
    [math]{\displaystyle A\setminus B =A\cap {\overline {B}}=\{x\mid x\in A\land x\notin B\}}[/math]
  • Симметрическая разность [math]A[/math] и [math]B[/math].
    [math] {\displaystyle A \bigtriangleup B \equiv A - B = (A \cup B) \setminus (A \cap B) }[/math]

Унарные операции над множествами

  • Дополнение определяется следующим образом:
    [math]{\displaystyle {{\overline {A}}\equiv A^{\complement }=\{x\mid x\notin A\}}=U\setminus A}[/math].

Теорема де Моргана

Теорема (де Моргана):
[math]\overline{\bigcup\limits_\alpha A_\alpha} = \bigcap\limits_\alpha \overline{A_\alpha} \\ \overline{\bigcap\limits_\alpha A_\alpha} = \bigcup\limits_\alpha \overline{A_\alpha} [/math]
Доказательство:
[math]\triangleright[/math]

Докажем первое утверждение, второе доказывается аналогично. Для того, чтобы доказать равенство множеств, докажем, что первое множество включает второе и наоборот (частый приём при доказательстве равенства двух множеств).

  1. [math]\overline{\bigcup\limits_\alpha A_\alpha} \subseteq \bigcap\limits_\alpha \overline{A_\alpha}[/math]
    • Пусть [math]x \in \left ( \overline{\bigcup\limits_\alpha A_\alpha} \right )[/math]. Значит, не существует [math]\alpha_1[/math] такого, что [math]x \in A_{\alpha_1}[/math]. Следовательно, [math]x \in \overline{A_\alpha}[/math] для любого [math]\alpha[/math] и [math]x \in \left (\bigcap\limits_\alpha \overline{A_\alpha} \right )[/math].
    • В силу выбора [math]x[/math] (любой элемент множества [math]\overline{\bigcup\limits_\alpha A_\alpha}[/math]) следует искомое включение.
  2. [math]\bigcap\limits_\alpha \overline{A_\alpha} \subseteq \overline{\bigcup\limits_\alpha A_\alpha}[/math]
    • Пусть [math]x \in \left ( \bigcap\limits_\alpha \overline{A_\alpha} \right )[/math]. Тогда для любого [math]\alpha[/math] [math]x \in \overline{A_\alpha}[/math], то есть, [math]x \notin A_\alpha[/math]. Поскольку [math]x[/math] не входит ни в одно объединяемое множество, то [math]x \notin \bigcup\limits_\alpha A_\alpha[/math], то есть, [math]x \in \overline{\bigcup\limits_{\alpha} A_\alpha}[/math]
    • Аналогично, в силу выбора [math]x[/math] выполняется искомое включение.
[math]\triangleleft[/math]

Теорема де Моргана устанавливает двойственность понятий объединения и пересечения множеств. То есть, имея некоторое верное равенство, содержащее объединения и пересечения, можно переписать его, заменив пересечения на объединения и наоборот. Например, из равенства

[math](A \cup B) \cap C = (A \cap C) \cup (B \cap C)[/math] следует равенство
[math](A \cap B) \cup C = (A \cup C) \cap (B \cup C)[/math].

Доказывается это следующим образом: равны множества, значит, равны дополнения. После раскрытия дополнений приходим к написанному равенству.