Изменения

Перейти к: навигация, поиск

Обучение с подкреплением

1995 байт убрано, 19:13, 4 сентября 2022
м
rollbackEdits.php mass rollback
{{Определение
|definition=
'''Обучение с подкреплением''' (англ. ''reinforcement learning'') {{---}} способ машинного обучения, при котором система обучается, взаимодействуя с некоторой средой.
}}
 
== Обучение с подкреплением ==
'''Обучение с подкреплением''', идея которого была почерпнута в смежной области психологии, является подразделом [[машинное обучение|машинного обучения]], изучающим, как ''агент'' должен ''действовать'' в ''окружении'', чтобы максимизировать некоторый долговременный ''выигрыш''.
Алгоритмы с частичным обучением пытаются найти ''стратегию'', приписывающую ''состояниям'' окружающей среды действия, которые должен предпринять агент в этих состояниях.
В экономике и теории игр обучение с подкреплением рассматривается в качестве интерпретации того, как может установиться равновесие.
Окружение В обучении с подкреплением существует агент (''agent'') взаимодействует с окружающей средой (''environment''), предпринимая действия (''actions''). Окружающая среда дает награду (''reward'') за эти действия, а агент продолжает их предпринимать. Алгоритмы с частичным обучением пытаются найти стратегию, приписывающую состояниям (''states'') окружающей среды действия, одно из которых может выбрать агент в этих состояниях. Среда обычно формулируется как [http://en.wikipedia.org/wiki/Markov_decision_process марковский процесс принятия решений] (МППР) с конечным множеством состояний, и в этом смысле алгоритмы обучения с подкреплением тесно связаны с динамическим программированием.
Вероятности выигрышей и перехода состояний в МППР обычно являются величинами случайными, но стационарными в рамках задачи.
При обучении с подкреплением, в отличии от [[обучение с учителем|обучения с учителем]], не предоставляются верные пары „входные "входные данные-ответ“ответ", а принятие субоптимальнх решений (дающих локальный экстремум) не ограничивается явно.Обучение с подкреплением пытается найти компромисс между исследованием неизученных областей и применением имеющихся знаний(''exploration vs exploitation'').Баланс изучения-применения при обучении с подкреплением исследуется в задаче [http://en.wikipedia.org/wiki/Multi-armed_bandit многорукого бандитао многоруком бандите].
Формально простейшая модель обучения с подкреплением состоит из:# * множества состояний окружения (''states'') <itex>S</itex>;# * множества действий (''actions'') <itex>A</itex>;# * множества вещественнозначных скалярных "выигрышей"(''rewards'').
В произвольный момент времени <itex>t</itex> агент характеризуется состоянием <tex>s_t \in S</tex> и множеством возможных действий <tex>A(s_t)</tex>.
Выбирая действие <tex>a \in A(s_t)</tex>, он переходит в состояние <tex>s_{t+1}</tex> и получает выигрыш <tex>r_t</tex>.
Основываясь на таком взаимодействии с окружающей средой, агент, обучающийся с подкреплением, должен выработать стратегию <tex>\pi: S \to A</tex>, которая максимизирует величину <tex>R=r_0 + r_1+\cdots+r_n</tex> в случае МППР, имеющего терминальное состояние, или величину <br />: ::<tex>R=\sum_t \gamma^t r_t</tex> <br /> , для МППР без терминальных состояний (где <tex>0 \leq \gamma \leq 1</tex> {{--- }} дисконтирующий множитель для „предстоящего выигрыша“"предстоящего выигрыша").
Таким образом, обучение с подкреплением особенно хорошо подходит для решения задач, связанных с выбором между долгосрочной и краткосрочной выгодой.
=== Постановка задачи обучения с подкреплением ===
[[File:Simple_RLRL.png|thumb|RLlink=https://econophysica.ru/services/machine-схемаlearning/|Взаимодействие агента со средой]] <tex>S</tex> {{---}} множество состояний среды
<i>S</i> - множество состояний среды <br />
Игра агента со средой:
# * инициализация стратегии <tex>\pi_1(a|s)</tex> и состояния среды <tex>s_1</tex>;# * для всех <tex>t = 1..\ldots T</tex>:## ** агент выбирает действие <tex>a_t ∼ \pi_t(a|s_t)</tex>;## ** среда генерирует премию награду <tex>r_{t + 1} ∼ p(r|a_t, s_t)</tex> и новое состояние <tex>s_{t + 1} ∼ p(s|a_t, s_t)</tex>;## ** агент корректирует стратегию <tex>\pi_{t + 1}(a|s)</tex>.
Это марковский процесс принятия решений (МППР), если
<tex>P(s_{t+1} = s′, r_{t+1} = r | s_t, a_t, r_t, s_{t−1}, a_{t−1}, r_{t−1}, .. ,s_1, a_1) == P(s_{t+1} = s′,r_{t+1} = r | s_t, a_t)</tex>,
МППР называется финитным, если <tex>|A| < \infty</tex>, <tex>|S| < \infty</tex>
Наивный подход к решению этой задачи подразумевает следующие шаги:
# * опробовать все возможные стратегии;# * выбрать стратегию с наибольшим ожидаемым выигрышем.
Первая проблема такого подхода заключается в том, что количество доступных стратегий может быть очень велико или же бесконечно.
Вторая проблема возникает, если выигрыши стохастические — чтобы точно оценить выигрыш от каждой стратегии потребуется многократно применить каждую из них.
Этих проблем можно избежать, если допустить некоторую структуризацию и, возможно, позволить результатам, полученным от пробы одной стратегии, влиять на оценку для другой.
Подход с использованием функции полезности использует множество оценок ожидаемого выигрыша только для одной стратегии <tex>\pi</tex> (либо текущей, либо оптимальной).
При этом пытаются оценить либо ожидаемый выигрыш, начиная с состояния <itex>s</itex>, при дальнейшем следовании стратегии <tex>\pi</tex>, <br /> ::<tex>V(s)=E[R|s,\pi]</tex>, <br /> либо ожидаемый выигрыш, при принятии решения <itex>a</itex> в состоянии <itex>s</itex> и дальнейшем соблюдении <tex>\pi</tex>, <br />::<tex>Q(s,a)=E[R|s,\pi,a]</tex>. <br />Если для выбора оптимальной стратегии используется функция полезности <i>Q</i>, то оптимальные действия всегда можно выбрать как действия, максимизирующие полезность.Если же мы пользуемся функцией <i>V</i>, необходимо либо иметь модель окружения в виде вероятностей <tex>P(s'|s,a)</tex>, что позволяет построить функцию полезности вида <br />::<tex>Q(s,a)=\sum_{s'}V(s')P(s'|s,a)</tex>, <br />либо применить т.н. метод исполнитель-критик, в котором модель делится на две части: критик, оценивающий полезность состояния <i>V</i>, и исполнитель, выбирающий подходящее действие в каждом состоянии.
::<tex>Q(s, a) = E[R|s, \pi, a]</tex>, Если для выбора оптимальной стратегии используется функция полезности <tex>Q</tex>, то оптимальные действия всегда можно выбрать как действия, максимизирующие полезность. Если же мы пользуемся функцией <tex>V</tex>, необходимо либо иметь модель окружения в виде вероятностей <tex>P(s'|s, a)</tex>, что позволяет построить функцию полезности вида ::<tex>Q(s, a) = \sum_{s'}V(s')P(s'|s, a)</tex>, либо применить т.н. метод исполнитель-критик, в котором модель делится на две части: критик, оценивающий полезность состояния <tex>V</tex>, и исполнитель, выбирающий подходящее действие в каждом состоянии. Имея фиксированную стратегию <tex>\pi</tex>, оценить <tex>E[R|\cdot]</tex> при <tex>\gamma=01</tex> можно просто усреднив непосредственные выигрыши.Наиболее очевидный способ оценки при <tex>\gamma>\in (0, 1)</tex> {{---}} усреднить суммарный выигрыш после каждого состояния.
Однако для этого требуется, чтобы МППР достиг терминального состояния (завершился).
Поэтому построение искомой оценки при <tex>\gamma>\in (0, 1)</tex> неочевидно. Однако, можно заметить, что <itex>R</itex> образуют рекурсивное уравнение Беллмана: <br /> ::<tex>E[R|s_t]=r_t+\gamma E[R|s_{t+1}]</tex>. <br />, Подставляя имеющиеся оценки, <itex>V</itex>, и применяя метод градиентного спуска с квадратичной функцией ошибок, мы приходим к алгоритму [http://en.wikipedia.org/wiki/Temporal_difference_learning обучения с временными воздействиями](''temporal difference (TD) learning'').
В простейшем случае и состояния, и действия дискретны и можно придерживаться табличных оценок для каждого состояния.
 
Другие похожие методы: Адаптивный эвристический критик (Adaptive Heuristic Critic, AHC), [http://en.wikipedia.org/wiki/SARSA SARSA] и Q-обучение ([http://en.wikipedia.org/wiki/Q-Learning Q-learning]).
Все вышеупомянутые используют различные методы приближения, но в некоторых случаях сходимость не гарантируется.
Для уточнения оценок используется метод градиентного спуска или [[метод наименьших квадратов]] в случае линейных приближений.
== Задача о многоруком бандите (''The multi-armed bandit problem'') ==
[[File:bandit.jpg|thumb|link=http://toppromotion.ru/blog/seo-category/novyij-algoritm-pod-nazvaniem-%C2%ABmnogorukij-bandit%C2%BB.html|Многорукий бандит]]
=== Формулировка ===
 <tex>A</tex> {{---}} множество возможных ''действий'' <br />(ручек автомата), <tex>p_a(r)</tex> {{---}} неизвестное распределение ''награды'' <tex>r \in R</tex> за <tex>\forall a \in A</tex> <br />, <tex>\pi_t(a)</tex> {{---}} ''стратегия'' агента в момент <tex>t</tex>, распределение на <tex>\forall a \in A</tex> <br />. 
Игра агента со средой:
# * инициализация стратегии <tex>\pi_1(a)</tex>;# * для всех <tex>t = 1..\ldots T</tex>:## ** агент выбирает действие (ручку) <tex>a_t ∼ \pi_t(a)</tex>;## ** среда генерирует награду <tex>r_t ∼ p_{a_t}(r)</tex>;## ** агент корректирует стратегию <tex>\pi_{t+1}(a)</tex>. <tex>Q_t(a) = \frac{\sum^{t}_{i=1}{r_i[a_i = a]}}{\sum^{t}_{i=1}{[a_i = a]}} \rightarrow max </tex> {{---}} средняя награда в <i>t</i> играх <br />,<tex>Q^∗(a) = \lim \limits_{t \rightarrow \infty} Q_t(a) \rightarrow max </tex> {{---}} ценность действия <tex>a</tex>.
<tex>Q_t(a) = \frac{\sum^{t}_{i=1}{r_i[a_i = a]}}У нас есть автомат {\sum^{t}_{i=1}{[a_i = a]---}} \rightarrow max </tex> — средняя награда в N<i/tex>t-рукий бандит, на каждом шаге мы выбираем за какую из </itex> играх N<br /tex>ручек автомата дернуть,т.е. множество действий <tex>Q^∗(a) A = \lim \limits_{y \rightarrow 1,2 \inftyldots ,N} Q_t(a) \rightarrow max </tex> — ценность действия <tex>a</tex>.
Выбор действия <tex>a_t</tex> на шаге <tex>t</tex> влечет награду <tex>R(a_t)</tex> при этом <tex>R(a)</tex> <tex>\forall a \in A</tex> есть случайная величина, распределение которой неизвестно.
Состояние среды у нас от шага к шагу не меняется, а значит множество состояний <tex>S</tex> тривиально, ни на что не влияет, поэтому его можно проигнорировать.
Задача является модельной Для простоты будем полагать, что каждому действию соответствует некоторое распределение, которое не меняется со временем. Если бы мы знали эти распределения, то очевидная стратегия заключалась бы в том, чтобы подсчитать математическое ожидание для понимания конфликта между ''exploitation'' (применениекаждого из распределений, эксплуатация) выбрать действие с максимальным математическим ожиданием и ''exploration'' (изучение, исследование)теперь совершать это действие на каждом шаге.
Задача выглядит следующим образом. <br />У нас есть автомат - "<tex>N</tex>-рукий бандит"Проблема в том, на каждом шаге мы выбираем за какую из <tex>N</tex> рук автомата дернутьчто распределения неизвестны,т.е. множество действий будет однако можно оценить математическое ожидание некоторой случайной величины <tex>A={1,2,…,N}\xi</tex>c неизвестным распределением.<br />Выбор действия <tex>a_t</tex>, на шаге <tex>t</tex>, влечет награду <tex>R(a_t)</tex> при этом Для <tex>R(a), a \in AK</tex> есть случайная величина, распределение которой мы не знаем. Состояние среды у нас от шага к шагу не меняется, а значит множество экспериментов <tex>S = \{s\}xi_k</tex> тривиально, ни на что не влияет, так что мы его игнорируем.<br />оценка математического ожидания это среднее арифметическое результатов экспериментов:
Для простоты пока будем полагать, что каждому действию соответствует некоторое распределение, которое не меняется со временем. Если бы мы знали, что за распределение, соответствуют каждому действию, то очевидная стратегия заключалась бы в том, чтобы подсчитать математическое ожидание для каждого из распределений, выбрать действие с максимальным математическим ожиданием и теперь совершать это действие на каждом шаге.<br />Проблема ровно одна: про распределения мы ничего не знаем.<br />Однако, оценивать математическое ожидание некоторой случайной величины <tex>E(\xi</tex> c неизвестным распределением мы умеем. Делаем <tex>P</tex> экспериментов, получаем <tex>) = \frac{1}{K} \xi_p|psum_{k=1..P}^{K}{\xi_k}</tex> величин, берем среднее арифметическое:
<tex>\xi′ = \frac{1}{P} \cdot \sum_{p=1}^{P}{\xi_p} </tex>Задача является модельной для понимания конфликта между ''exploitation''-''exploration''.
это === Жадные и будет оценка математического ожидания. Очевидно, что чем больше <tex>P\epsilon</tex> тем оценка точнее.-жадные стратегии (''greedy & <tex>\epsilon</tex>-greedy'') ===
== Жадные и эпсилон-жадные стратегии == Жадная (''greedy'') стратегия ====
Объединяя всё вышеизложенное* <tex>P_a = 0</tex> <tex>\forall a \in \{1 \ldots N\} </tex> {{---}} сколько раз было выбрано действие <tex>a</tex>, получаем простую "жадную" стратегию.
Жадная (greedy) стратегия* <tex>Q_a = 0</tex> <tex>\forall a \in \{1 \ldots N\}</tex> {{---}} текущая оценка математического ожидания награды для действия <tex>a</tex>.
Заведем массивы <br />На каждом шаге <tex>\{P_a=0|a=1,…,N\}t</tex>, <tex>P_a</tex> - сколько раз было выбрано * Выбираем действие <tex>a</tex> <br /><tex>\{Q_a=0|a=1,…,N\}</tex>, <tex>Q_a</tex> - текущая оценка с максимальной оценкой математического ожидания награды для действия <tex>a</tex>:
На каждом шаге <tex>t</tex>.<br />Выбираем действие с максимальной оценкой математического ожидания: <br /><tex>a_t = argmax\argmax_{Q_a|a=1..N\in A}Q_a </tex> <br />Выполняем действие at и получаем награду <tex>R_t</tex> <br />Обновляем оценку математического ожидания для действия <tex>a_t</tex>: <br /><tex>P_{a_t} = P_{a_{t+1}}</tex> <br /><tex>Q_{a_t} = Q_{a_{t+1}} P_{a_t} (R_t − Q_{a_t})</tex>,
Почему это не так хорошо как кажется?* Выполняем действие <tex>a_t</tex> и получаем награду <tex>R(a_t)</tex>;
Пример.<br />Пусть у нас есть "двурукий" бандит. Первая ручка всегда выдаёт награду равную 1, вторая всегда выдаёт 2. Действуя согласно жадной стратегии мы дёрнем в начале первую ручку (поскольку в начале у нас оценка математических ожиданий одинаковые и равны нулю) повысим её * Обновляем оценку до математического ожидания для действия <tex>Q_1 = 1a_t</tex>. И в дальнейшем всегда будем выбирать первую ручку, а значит на каждом шаге будем получать на 1 меньше, чем могли бы.:
Т.е. желательно всё таки не фиксироваться на одной ручке. Понятно:<tex>P_{a_t} = P_{a_t} + 1</tex>, что для нашего примера достаточно попробовать в начале каждую из ручек.Но если награда все-таки случайная величина, то единичной попытки будет явно не достаточно. В связи с этим предлагается следующая модификация жадной стратегии:
:<tex>Q_{a_t} = Q_{a_t} + \epsilon</tex>-жадная frac{1}{P_{a_t}} (R(<tex>\epsilona_t) − Q_{a_t})</tex>-greedy) стратегия.
Зададимся некоторым параметром <tex>\epsilon \in (0,1)</tex>В чем проблема?
Заведем массивы<br /><tex>\{P_a=0|a=Пусть у нас есть "двурукий" бандит. Первая ручка всегда выдаёт награду равную 1,вторая всегда выдаёт 2. Действуя согласно жадной стратегии мы дёрнем в начале первую ручку,N\}</tex>так как в начале оценки математических ожиданий равны нулю, увеличим её оценку до <tex>P_a</tex> - сколько раз было выбрано действие <tex>a</tex> <br /><tex>\{Q_a=0|aQ_1 =1,…,N\}</tex>. В дальнейшем всегда будем выбирать первую ручку, а значит на каждом шаге будем получать на 1 меньше, <tex>Q_a</tex> - текущая оценка математического ожидания награды для действия <tex>a</tex>чем могли бы.
На каждом шаге <tex>t</tex>В данном случае достаточно попробовать в начале каждую из ручек вместо того, чтобы фокусироваться только на одной.<br />Получаем значение <tex>\alpha</tex> случайной величины равномерно расределенной на отрезке <tex>(0,1)</tex> <br />Если <tex>\alpha \in (0,\epsilon)</tex>Но если награда случайная величина, то выберем действие <tex>a_t</tex> из набора <tex>A</tex> случайно и равновероятноединичной попытки будет не достаточно. <br />Поэтому модифицируем жадную стратегию следующим образом:
Иначе как и в жадной стратегии выбираем действие с максимальной оценкой математического ожидания:==== <tex>\epsilon</tex>-жадная (<tex>\epsilon</tex>-''greedy'') стратегия ====
<tex>a_t = argmax{Q_a[[File:Eps-greedy.png|thumb|313px|alink=1,https://vbystricky.github..,N}<io/tex> <br 2017/>Выполняем действие <tex>a_t<01/tex> и получаем награду <tex>R_t</tex> <br />Обновляем оценку математического ожидания rl_multi_arms_bandits.html|Пример. Награда для действия стратегии с различными <tex>a_t\epsilon</tex>:]]
Введем параметр <tex>P_{a_t} = P_{a_{t+\epsilon \in (0,1}}</tex> <br /><tex>Q_{a_t} = Q_{a_{t+1}} P_{a_t}(R_t−Q_{a_t})</tex>.
Ясно, что если выбрать <tex>\epsilon = 0</tex> мы вернемся к просто жадной стратегии. Однако, если <tex>\epsilon > 0</tex>, в отличии от просто "жадной", у нас на На каждом шаге с вероятностью <tex>\epsilont</tex> присходит "исследование".
Пример. Награда для стратегии с различными * Получим значение <tex>\alpha</tex> {{---}} случайной величины равномерно распределенной на отрезке <tex>(0, 1)</tex>;* Если <tex>\alpha \in (0, \epsilon)</tex>, то выберем действие <tex>a_t \in A</tex>:случайно и равновероятно, иначе как в жадной стратегии выберем действие с максимальной оценкой математического ожидания;[[File:Eps-greedy* Обновляем оценки так же как в жадной стратегии.png]]
Если <tex>\epsilon == Метод UCB (upper confidence bound) == 0</tex>, то это обычная жадная стратегия. Однако если <tex>\epsilon > 0</tex>, то в отличии от жадной стратегии на каждом шаге с вероятностью <tex>\epsilon</tex> присходит "исследование" случайных действий.
Предыдущие алогритмы при принятии решений используют данные о среднем выигрыше. Проблема заключается в том, что если рука даёт выигрыш с какой-то вероятностью, то данные от наблюдений получаются шумные и мы можем считать самой выгодной рукой ту, которая на самом деле таковой не является.=== Стратегия Softmax ===
Алгоритм верхнего доверительного интервала (Основная идея алгоритма ''Upper confidence boundsoftmax'' или просто UCB) {{--- это семейство алгоритмов}} уменьшение потерь при исследовании за счёт более редкого выбора действий, которые пытаются решить эту проблему, используя при выборе данные не только о среднем выигрыше, но и о том, насколько можно доверять этим значениям выигрышанебольшую награду в прошлом. В книге описывается один такой алгоритм - UCBЧтобы этого добиться для каждого действия вычисляется весовой коэффициент на базе которого происходит выбор действия.Чем больше <tex>Q_t(a)</tex>, тем больше вероятность выбора <tex>a</tex>:
Как и в softmax в UCB при выборе рук используется весовой коэффициент, который представляет собой верхнюю границу доверительного интервала <tex>\pi_{t+1}(a) = \frac{exp(Q_t(a) / \tau)}{\sum\limits_{b \in A} {exp(Q_t(upper confidence boundb) / \tau)}}</tex>, что и дало название алгоритму) значения выигрыша:
<tex>Q_a = average_arm_reward + arm_bonus</tex><br /><tex>average_arm_reward\tau \in (0, \infty)</tex> {{--- это среднее значение выигрыша руки на момент выбора. Он ничем не отличается от того}} параметр, что используется в других алгоритмахс помощью которого можно настраивать поведение алгоритма.
При <tex>arm_bonus\tau \rightarrow \infty</tex> - это бонусное значение стратегия стремится к равномерной, которые показывает, насколько недоисследована эта рука по сравнению с остальнымито есть softmax будет меньше зависеть от значения выигрыша и выбирать действия более равномерно (exploration). Он вычисляется следующим образом:
При <tex>arm_bonus = \sqrt{tau \frac{2 \cdot \ln{total_count}}{arm_count}} </tex><tex>total_countrightarrow 0</tex> - это суммарное количество использований всех рукстратегия стремится к жадной, а <tex>arm_count</tex> - это количество использований данной рукито есть алгоритм будет больше ориентироваться на известный средний выигрыш действий (exploitation).
Доказательство [http://banditalgsЭкспонента используется для того, чтобы данный вес был ненулевым даже у действий, награда от которых пока нулевая.com/2016/09/18/the-upper-confidence-bound-algorithm здесь]
В отличие от предыдущих алгоритмов UCB не использует в своей работе ни случайные числа для выбора руки, ни параметры, которыми можно влиять на его работу. В начале работы алгоритма каждая из рук выбирается по одному разу (это нужно для того, чтобы можно было вычислить размер бонуса для всех рук). После этого в каждый момент времени выбирается рука с максимальным значением весового коэффициентаЭвристика: параметр <tex>\tau</tex> имеет смысл уменьшать со временем.
Несмотря на это отсутствие случайности, результаты работы этого алгоритма выглядят довольно шумно по сравнению с остальными. Это происходит из-за того, что данный алгоритм сравнительно часто выбирает недоисследованные руки.=== Метод UCB (''upper confidence bound'') ===
== Стратегия Softmax == Предыдущие алгоритмы при принятии решения используют данные о среднем выигрыше. Проблема в том, что если действие даёт награду с какой-то вероятностью, то данные от наблюдений получаются шумные и мы можем неправильно определять самое выгодное действие.
Алгоритм мягкого максимума верхнего доверительного интервала (softmax''upper confidence bound'' или UCB) {{-- это чуть более сложный алгоритм. Его основная идея - уменьшение потерь }} семейство алгоритмов, которые пытаются решить эту проблему, используя при исследовании за счёт более редкого выбора руквыборе данные не только о среднем выигрыше, но и о том, которые дали маленький выигрыш в прошломнасколько можно доверять значениям выигрыша. Чтобы этого добиться для каждой руки вычисляется весовой коэффициент, на базе которого происходит выбор руки:
<tex>Q_a = \expТакже как ''softmax'' в UCB при выборе действия используется весовой коэффициент, который представляет собой верхнюю границу доверительного интервала (average_arm_reward / temperatureupper confidence bound)</tex>значения выигрыша:
<tex>average_arm_reward\pi_{t+1}(a) = Q_t(a) + b_a</tex> - это среднее значение выигрыша руки на момент выбора. Оно позволяет придать больший вес выгодным рукам.,
temperature <tex>b_a = \sqrt{\frac{2 \ln{\sum_a P_a}}{P_a}} </tex> {{- это параметр--}} бонусное значение, которые показывает, насколько недоисследовано действие по сравнению с помощью которого можно настраивать поведение алгоритма (он называется температура). Он может принимать значения от нуля до бесконечности. Если он близок к бесконечности, то softmax будет меньше зависеть от значения выигрыша и выбирать руки более равномерно (т.е. перейдёт в режим исследования). Если он близок к нулю, то алгоритм будет больше ориентироваться на известный средний выигрыш рук (т.е. перейдёт в режим эксплуатации)остальными.
Экспонента используется для того, чтобы данный вес был ненулевым даже у рук, выигрыш от которых пока нулевойДоказательство [http://banditalgs.com/2016/09/18/the-upper-confidence-bound-algorithm здесь]
Вероятность В отличие от предыдущих алгоритмов UCB не использует в своей работе ни случайные числа для выбора руки равна отношению её действия, ни параметры, которыми можно влиять на его работу. В начале работы алгоритма каждое из действий выбирается по одному разу (для того чтобы можно было вычислить размер бонуса для всех действий). После этого в каждый момент времени выбирается действие с максимальным значением весового коэффициента и сумме весовых коэффициентов всех рук. При выборе генерируется случайное число от 0 до 1, на основании которого произойдёт выбор конкретной руки.
Мягкий вариант компромисса "exploitationНесмотря на это отсутствие случайности результаты работы этого алгоритма выглядят довольно шумно по сравнению с остальными. Это происходит из-exploration":<br />чем больше <tex>Q_t(a)</tex>, тем больше вероятность выбора <tex>a</tex>: <br /><tex>\pi_{t+1}(a) = \frac{exp(Q_t(a)/τ)}{\sum\limits_{b \in A} {exp(Q_t(b)/τ)}}</tex> <br />где <tex>\tau</tex> — параметр температуры,<br />при <tex>\tau \rightarrow 0</tex> стратегия стремится к жадной,<br />при <tex>\tau \rightarrow \infty</tex> — к равномернойза того, т.е. чисто исследовательской<br />Эвристика: параметр <tex>\tau</tex> имеет смысл уменьшать со временемчто данный алгоритм сравнительно часто выбирает недоисследованные действия.
== Q-learning ==
'''Q-обучение''' (Q-learning) — метод, применяемый в [[Искусственный интеллект|искусственном интеллекте]] при [[Агентный подход|агентном подходе]]. Относится к экспериментам вида [[Обучение с подкреплением|oбучение с подкреплением]]. На основе получаемого от среды вознаграждения [[Интеллектуальный агент|агент]] формирует [[Функция полезности|функцию полезности]] <tex>Q</tex>, что впоследствии дает ему возможность уже не случайно выбирать стратегию поведения, а учитывать опыт предыдущего взаимодействия со средой. Одно из преимуществ <tex>Q</tex>-обучения — обучения {{---}} то, что оно в состоянии сравнить ожидаемую [[Полезность (экономика)|полезность]] доступных действий, не формируя модели окружающей среды. Применяется для ситуаций, которые можно представить в виде [[Марковский процесс принятия решений|марковского процесса принятия решений]]МППР. Таким образом, алгоритм это функция качества от состояния и действия: :<tex>Q: S \times A \to \mathbb{R}</tex>, Перед обучением <tex>Q</tex> инициализируется случайными значениями. После этого в каждый момент времени <tex>t</tex> агент выбирает действие <tex>a_t</tex>, получает награду <tex>r_t</tex>, переходит в новое состояние <tex>s_{t+1}</tex>, которое может зависеть от предыдущего состояния <tex>s_t</tex> и выбранного действия, и обновляет функцию <tex>Q</tex>. Обновление функции использует взвешенное среднее между старым и новым значениями: :<tex>Q^{new}(s_{t},a_{t}) \leftarrow (1-\alpha) \cdot \underbrace{Q(s_{t},a_{t})}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \overbrace{\bigg( \underbrace{r_{t}}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a}Q(s_{t+1}, a)}_{\text{estimate of optimal future value}} \bigg) }^{\text{learned value}} </tex>, где ''<tex>r_{t}</tex>'' это награда, полученная при переходе из состояния <tex>s_{t}</tex> в состояние <tex>s_{t+1}</tex>, и <tex>\alpha</tex> это скорость обучения (<tex>0 < \alpha \le 1</tex>). Алгоритм заканчивается, когда агент переходит в терминальное состояние <tex>s_{t+1}</tex>.
=== Aлгоритм Q-learning ===
[[File:Q-Learning.png|thumb|313px|Процесс Q-обучения]]
# '''Initialization''' (Инициализация):
## for each s and a do Q[s, a] = RND // инициализируем функцию полезности Q от действия а в ситуации s как случайную для любых входных данных
# '''Observe''' (Наблюдение):
## s' = s // Запомнить предыдущие состояния
## a' = a // Запомнить предыдущие действия
## s = FROM_SENSOR // Получить текущие состояния с сенсора
## r = FROM_SENSOR // Получить вознаграждение за предыдущее действие
# '''Update''' (Обновление полезности):
## Q[s',a'] = Q[s',a'] + LF * (r + DF * MAX(Q,s) — Q[s',a'])
# '''Decision''' (Выбор действия):
## a = ARGMAX(Q, s)
## TO_ACTIVATOR = a
# '''Repeat''': GO TO 2
 
=== Обозначения ===
* LF — это фактор обучения. Чем он выше, тем сильнее агент доверяет новой информации.
* DF — это фактор дисконтирования. Чем он меньше, тем меньше агент задумывается о выгоде от будущих своих действий.
[[File:Q-Learning.png|thumb|313px|link=== Функция MAX(https://en.wikipedia.org/wiki/Q,s) ===# max = minValue# for each a of ACTIONS(s) do## if -learning|Процесс Q[s, a-обучения] > max then max = Q[s, a]# return max
* <tex>S</tex> — множество состояний,* <tex>A</tex> — множество действий,* <tex>R === Функция ARGMAX(QS \times A \rightarrow \mathbb{R}</tex> {{---}} функция награды,s) ===# amax * <tex>T = First of ACTION(s)S \times A \rightarrow S</tex> {{---}} функция перехода,# for each a of ACTION* <tex>\alpha \in [0, 1]</tex> {{---}} learning rate (sобычно 0.1) do, чем он выше, тем сильнее агент доверяет новой информации,## if Q* <tex>\gamma \in [s0, a1] </tex> Q[s{{---}} discounting factor, чем он меньше, amax] then amax = a# return amaxтем меньше агент задумывается о выгоде от будущих своих действий.
'''fun''' Q-learning(<tex>S, A, R, T, \alpha, \gamma</tex>):
'''for''' <tex> s \in S</tex>:
'''for''' <tex> a \in A</tex>:
Q(s, a) = rand()
'''while''' Q is not converged:
s = <tex> \forall s \in S</tex>
'''while''' s is not terminal:
<tex>\pi(s) = argmax_{a}{Q(s, a)}</tex>
a = <tex>\pi(s)</tex>
r = R(s, a)
s' = T(s, a)
<tex>Q(s', a) = (1 - \alpha) Q(s', a) + \alpha (r + \gamma \max\limits_{a'}{Q(s', a')})</tex>
s = s'
return Q
== Ссылки ==
*[http://en.wikipedia.org/wiki/Reinforcement_learning Wikipedia: Reinforcement learning]
*[https://login.cs.utexas.edu/sites/default/files/legacy_files/research/documents/1%20intro%20up%20to%20RL%3ATD.pdf Sutton, Richard S., and Andrew G. Barto. Introduction to reinforcement learning. Vol. 135. Cambridge: MIT press, 1998.]
*[https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf Sutton R. S., Barto A. G. Reinforcement learning: An introduction. – 2011.]
*[http://www.machinelearning.ru/wiki/index.php?title=%D0%9E%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5_%D1%81_%D0%BF%D0%BE%D0%B4%D0%BA%D1%80%D0%B5%D0%BF%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5%D0%BC Обучение с подкреплением]
* [https://en.wikipedia.org/wiki/Multi-armed_bandit Многорукий бандит]
* [https://en.wikipedia.org/wiki/Q-learning Q-learning]
* [https://medium.freecodecamp.org/an-introduction-to-q-learning-reinforcement-learning-14ac0b4493cc An introduction to Q-Learning: reinforcement learning]
 
[[Категория: Машинное обучение]]
[[Категория: Обучение с подкреплением]]
1632
правки

Навигация