Редактирование: Определение интеграла Лебега

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 99: Строка 99:
 
С другой стороны, <tex>f(x) = \begin{cases}0, & x \in \mathbb{Q}\\1, & x \notin \mathbb{Q}\end{cases}, f \notin \mathcal{R}(0; 1)</tex>
 
С другой стороны, <tex>f(x) = \begin{cases}0, & x \in \mathbb{Q}\\1, & x \notin \mathbb{Q}\end{cases}, f \notin \mathcal{R}(0; 1)</tex>
  
С другой стороны, она кусочно-постоянная на оси. <tex>\mathbb{Q}</tex>{{---}} измеримое по Лебегу, ибо счётно. Значит, <tex>f</tex>{{---}} измеримо на всей оси, а значит, и на <tex>[0; 1]</tex>. Тогда по доказанной выше(намного выше <tex>\smile</tex>) теореме, она интегрируема по Лебегу на <tex>[0; 1]</tex>. Однако, по Риману она не интегрируема. Выходит, на вещественной оси интеграл Лебега {{---}} распространение интеграла Римана.
+
С другой стороны, она кусочно-постоянная на оси. <tex>\mathbb{Q}</tex>{{---}} измеримое по Лебегу, ибо счётно. Значит, <tex>f</tex>{{---}} измеримо на всей оси, а значит, и на <tex>[0; 1]</tex>. Тогда по доказанному выше(намного выше <tex>\smile</tex>) теореме, она интегрируема по Лебегу на <tex>[0; 1]</tex>. Однако, по Риману она не интегрируема. Выходит, на вещественной оси интеграл Лебега {{---}} распространение интеграла Римана.
  
 
[[Математический_анализ_2_курс|на главную <<]] [[Некоторые элементарные свойства интеграла Лебега|>>]]
 
[[Математический_анализ_2_курс|на главную <<]] [[Некоторые элементарные свойства интеграла Лебега|>>]]
 
[[Категория:Математический анализ 2 курс]]
 
[[Категория:Математический анализ 2 курс]]

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)