Редактирование: Ортогональная сумма подпространств. Ортогональный проектор. Задача о перпендикуляре

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 65: Строка 65:
 
{{Лемма
 
{{Лемма
 
|statement=
 
|statement=
Пусть <tex>\{e_i\}_{i=1}^{k}</tex> {{---}} ОРТН базис <tex>L \ (dimL=k)</tex> тогда <tex>\mathcal{P}_{L}^{\bot}x= \sum\limits_{i=1}^{k}\left\langle x,e_i\right\rangle e_i. </tex>
+
Пусть <tex>\{e_i\}_{i=1}^{k}</tex> {{---}} ОРТН базис <tex>L \ (dimL=k)</tex> тогда <tex>\mathcal{P}_{L}^{\bot}x= \sum\limits_{i=1}{k}\left\langle x,e_i\right\rangle e_i. </tex>
  
 
|proof=
 
|proof=
Строка 72: Строка 72:
 
'''Шаг 1.''' Рассмотрим <tex>e_j \ (j=1..k): \mathcal{P}_{L}^{\bot}e_j= \sum\limits_{i=1}^{k}\left\langle e_j,e_i\right\rangle e_i=\left\langle e_j,e_j\right\rangle e_j=e_j \Rightarrow \forall x \in L: \mathcal{P}_{L}^{\bot}x=x</tex>
 
'''Шаг 1.''' Рассмотрим <tex>e_j \ (j=1..k): \mathcal{P}_{L}^{\bot}e_j= \sum\limits_{i=1}^{k}\left\langle e_j,e_i\right\rangle e_i=\left\langle e_j,e_j\right\rangle e_j=e_j \Rightarrow \forall x \in L: \mathcal{P}_{L}^{\bot}x=x</tex>
  
'''Шаг 2.''' Рассмотрим <tex>e_s \ (s=k+1..n): \mathcal{P}_{L}^{\bot}e_s= \sum\limits_{i=1}^{k}\left\langle e_s,e_i\right\rangle e_i=0 \Rightarrow \forall y \in M: \mathcal{P}_{L}^{\bot}y=0 </tex>
+
'''Шаг 2.''' Рассмотрим <tex>e_s \ (s=k+1..n): \mathcal{P}_{L}^{\bot}e_s= \sum\limits_{i=1}{k}\left\langle e_s,e_i\right\rangle e_i=0 \Rightarrow \forall y \in M: \mathcal{P}_{L}^{\bot}y=0 </tex>
 
}}
 
}}
  

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)