Ортогональные системы векторов — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Равенство Парсеваля)
Строка 35: Строка 35:
 
{{Теорема
 
{{Теорема
 
|statement=
 
|statement=
Для того, чтобы ОРТН-система векторов <tex>{\{e_i\}}^k_{i=1}</tex> могла бы быть полной в евклидовом пространстве <tex>E</tex>, необходимо и достаточно, чтобы выполнялось равенство Парсеваля: <tex>\Vert x\Vert^2 =\sum\limits_{i=1}^{k} {|\varphi_i|}^2</tex>, где <tex>n=\dim E</tex>   
+
Для того, чтобы ОРТН-система векторов <tex>{\{e_i\}}^n_{i=1}</tex> могла бы быть полной в евклидовом пространстве <tex>E</tex>, необходимо и достаточно, чтобы выполнялось равенство Парсеваля: <tex>\Vert x\Vert^2 =\sum\limits_{i=1}^{n} {|\varphi_i|}^2</tex>, где <tex>n=\dim E</tex>   
 
|proof=
 
|proof=
Достаточность: пусть <tex>n\ne\dim E</tex>, тогда т.к. <tex>{\{e_i\}}^k_{i=1}</tex> {{---}} ОРТН-система, то набор <tex>{\{e_i\}}^k_{i=1}</tex> {{---}} ЛНЗ(по определению ортонормированности), а значит он может быть полным, только если <tex>n=\dim L</tex>
+
Достаточность: пусть <tex>n\ne\dim E</tex>, тогда т.к. <tex>{\{e_i\}}^n_{i=1}</tex> {{---}} ОРТН-система, то набор <tex>{\{e_i\}}^n_{i=1}</tex> {{---}} ЛНЗ(по определению ортонормированности), а значит он может быть полным, только если <tex>n=\dim L</tex>
 
Необходимость: полностью следует из равенства Парсеваля.
 
Необходимость: полностью следует из равенства Парсеваля.
 
}}
 
}}
 
[[Категория: Алгебра и геометрия 1 курс]]
 
[[Категория: Алгебра и геометрия 1 курс]]

Версия 01:06, 14 июня 2013

Коэффициенты Фурье

Определение:
Пусть [math]{\{e_i\}}^k_{i=1}[/math] — ОРТН-система векторов. Тогда числа [math]\varphi_i = \left\langle x, e_i\right\rangle[/math] называются коэффициентами Фурье вектора [math]x[/math] относительно системы [math]{\{e_i\}}^k_{i=1}[/math]

NB: [math]\mathcal{P}^{\bot}_L x = \sum\limits_{i=1}^{k}\varphi_{i}e_{i}\;\;(k \le n = \dim E)[/math]

Неравенство Бесселя

Лемма:
[math]{\Vert\mathcal{P}^{\bot}_L x\Vert}^2 = \sum\limits_{i=1}^k{|\varphi_{i}|}^2[/math]
Доказательство:
[math]\triangleright[/math]

[math]{\Vert\mathcal{P}^{\bot}_L x\Vert}^2 = \left\langle \mathcal{P}^{\bot}_L x; \mathcal{P}^{\bot}_L x\right\rangle = \left\langle\sum\limits_{i=1}^{k}\varphi_{i}e_{i}; \sum\limits_{j=1}^{k}\varphi_{j}e_{j}\right\rangle = \sum\limits_{i,j=1}^{k} \varphi_i\cdot\overline{\varphi_j}\left\langle e_i, e_j\right\rangle[/math];

Т.к. у нас ОРТН-базис, то [math]\left\langle e_i, e_j\right\rangle = \delta_{ij}[/math], поэтому одно суммирование можно убрать:

[math]\sum\limits_{i,j=1}^{k} \varphi_i\cdot\overline{\varphi_j}\left\langle e_i, e_j\right\rangle = \sum\limits_{i=1}^{k} \varphi_i\cdot\overline{\varphi_j} = \sum\limits_{i=1}^{k} {|\varphi_i|}^2[/math]
[math]\triangleleft[/math]
Теорема (неравенство Бесселя):
[math]\Vert x\Vert^2 \ge \sum\limits_{i=1}^{k} {|\varphi_i|}^2[/math]
Доказательство:
[math]\triangleright[/math]
Утверждается, что равенство напрямую следует из леммы
[math]\triangleleft[/math]

Равенство Парсеваля

Теорема (равенство Парсеваля):
[math]\Vert x\Vert^2 =\sum\limits_{i=1}^{k} {|\varphi_i|}^2 \Longleftrightarrow x\in L[/math]
Доказательство:
[math]\triangleright[/math]
Утверждается, что равенство напрямую следует из леммы
[math]\triangleleft[/math]
Теорема:
Для того, чтобы ОРТН-система векторов [math]{\{e_i\}}^n_{i=1}[/math] могла бы быть полной в евклидовом пространстве [math]E[/math], необходимо и достаточно, чтобы выполнялось равенство Парсеваля: [math]\Vert x\Vert^2 =\sum\limits_{i=1}^{n} {|\varphi_i|}^2[/math], где [math]n=\dim E[/math]
Доказательство:
[math]\triangleright[/math]

Достаточность: пусть [math]n\ne\dim E[/math], тогда т.к. [math]{\{e_i\}}^n_{i=1}[/math] — ОРТН-система, то набор [math]{\{e_i\}}^n_{i=1}[/math] — ЛНЗ(по определению ортонормированности), а значит он может быть полным, только если [math]n=\dim L[/math]

Необходимость: полностью следует из равенства Парсеваля.
[math]\triangleleft[/math]