Отношение вершинной двусвязности — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Блоки)
м (Вершинная двусвязность)
Строка 3: Строка 3:
 
|definition=
 
|definition=
 
Два ребра <math>u_1 v_1</math> и <math>u_2 v_2</math> графа называются '''вершинно двусвязными''', если
 
Два ребра <math>u_1 v_1</math> и <math>u_2 v_2</math> графа называются '''вершинно двусвязными''', если
<math>\exist P=u_1\rightsquigarrow u_2, Q=v_1\rightsquigarrow v_2, P\cap Q = \varnothing</math>.
+
<math>\exist P=u_1\rightsquigarrow u_2, Q=v_1\rightsquigarrow v_2: P\cap Q = \varnothing</math>.
 
}}
 
}}
  
Строка 17: Строка 17:
  
 
''Замечание.'' Рассмотрим следующее определение: вершины <math>u</math> и <math>v</math> называются вершинно двусвязными, если между ними существуют 2 пути, не пересекающихся по вершинам, за исключением концов. Это определение не может претендовать на корректность, так как в этом случае отношение вершинной двусвязности перестанет быть транзитивным.
 
''Замечание.'' Рассмотрим следующее определение: вершины <math>u</math> и <math>v</math> называются вершинно двусвязными, если между ними существуют 2 пути, не пересекающихся по вершинам, за исключением концов. Это определение не может претендовать на корректность, так как в этом случае отношение вершинной двусвязности перестанет быть транзитивным.
 
  
 
==Блоки==
 
==Блоки==

Версия 11:16, 1 октября 2010

Вершинная двусвязность

Определение:
Два ребра [math]u_1 v_1[/math] и [math]u_2 v_2[/math] графа называются вершинно двусвязными, если [math]\exist P=u_1\rightsquigarrow u_2, Q=v_1\rightsquigarrow v_2: P\cap Q = \varnothing[/math].


Теорема:
Отношение вершинной двусвязности является отношением эквивалентности на ребрах.
Доказательство:
[math]\triangleright[/math]

Рефлексивность: Очевидно. Коммутативность: Очевидно.

Транзитивность: ...
[math]\triangleleft[/math]

Замечание. Рассмотрим следующее определение: вершины [math]u[/math] и [math]v[/math] называются вершинно двусвязными, если между ними существуют 2 пути, не пересекающихся по вершинам, за исключением концов. Это определение не может претендовать на корректность, так как в этом случае отношение вершинной двусвязности перестанет быть транзитивным.

Блоки

Определение:
Блоками, или компонентами вершинной двусвязности графа, называют его подграфы, множества ребер которых - классы эквивалентности вершинной двусвязности, а множества вершин - множества концов ребер из соответствующих классов.


Точки сочленения

Определение:
Точка сочленения графа [math]G[/math] - вершина, принадлежащая как минимум двум блокам [math]G[/math].


Определение:
Точка сочленения графа [math]G[/math] - вершина, при удалении которой в [math]G[/math] увеличивается число компонент связности.