Отношение рёберной двусвязности — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Отмена правки 7522 участника Kirelagin (обсуждение))
Строка 10: Строка 10:
 
|proof=
 
|proof=
  
Пусть <tex>R</tex> отношение реберной двусвязности.
+
Пусть <tex>R</tex> - отношение реберной двусвязности.
  
 
'''Рефлексивность:''' <tex>(u, u)\in R. </tex> (Очевидно)
 
'''Рефлексивность:''' <tex>(u, u)\in R. </tex> (Очевидно)
Строка 18: Строка 18:
 
'''Транзитивность:''' <tex>(u, v)\in R </tex> и <tex>(v, w)\in R  \Rightarrow (u, w)\in R. </tex>
 
'''Транзитивность:''' <tex>(u, v)\in R </tex> и <tex>(v, w)\in R  \Rightarrow (u, w)\in R. </tex>
  
''Доказательство:'' Пусть <tex>P_1,P_2 : u \rightsquigarrow v </tex> (реберно непересекающиеся пути) и  <tex>Q_1,Q_2 : v \rightsquigarrow w </tex> (реберно непересекающиеся пути).
+
''Доказательство:'' Пусть <tex>P_1,P_2 : u \rightsquigarrow v </tex> (реберно не пересекающиеся пути) и  <tex>Q_1,Q_2 : v \rightsquigarrow w </tex> (реберно не пересекающиеся пути).
  
Составим пути <tex>S_1 = P_1 \circ Q_1 </tex> и <tex>S_2 = P_2 \circ Q_2 </tex>. Сделаем пути <tex>S_1, S_2 </tex> [[Теорема о существовании простого пути в случае существования пути|простыми]]. Получим два реберно непересекающихся пути <tex>S_1, S_2 </tex>. Действительно, <tex>S_1 \land S_2 = \varnothing</tex>, так как <tex>P_1 \land P_2 = \varnothing </tex> (реберная двусвязность <tex>u</tex> и <tex>v</tex>), <tex>Q_1 \land Q_2 = \varnothing </tex> (реберная двусвязность <tex>w</tex> и <tex>v</tex>).
+
Составим пути <tex>S_1 = P_1 \circ Q_1 </tex> и <tex>S_2 = P_2 \circ Q_2 </tex>. Сделаем пути <tex>S_1, S_2 </tex> [[Теорема о существовании простого пути в случае существования пути|простыми]]. Получим два реберно не пересекающихся пути <tex>S_1, S_2 </tex>. Действительно, <tex>S_1 \land S_2 = \varnothing</tex>, так как <tex>P_1 \land P_2 = \varnothing </tex> (реберная двусвязность <tex>u</tex> и <tex>v</tex>), <tex>Q_1 \land Q_2 = \varnothing </tex> (реберная двусвязность <tex>w</tex> и <tex>v</tex>).
 
<tex>P_1 \land Q_2 = </tex> {какой-то путь} или <tex>P_2 \land Q_1 = </tex> {какой-то путь} не влияют на реберную двусвязность.
 
<tex>P_1 \land Q_2 = </tex> {какой-то путь} или <tex>P_2 \land Q_1 = </tex> {какой-то путь} не влияют на реберную двусвязность.
<!-- [ЧЁ ЗА БРЕД???] Если <tex>S_1 \land S_2 \neq \varnothing </tex>, тогда возьмем <tex>S_1 = P_1 \circ Q_2 </tex>, а <tex>S_2 = P_2 \circ Q_1 </tex>, сделаем их простыми. -->
+
Если <tex>S_1 \land S_2 \neq \varnothing </tex>, тогда возьмем <tex>S_1 = P_1 \circ Q_2 </tex>, а <tex>S_2 = P_2 \circ Q_1 </tex>, сделаем их простыми.
 
Утверждение доказано.
 
Утверждение доказано.
 
}}
 
}}
Строка 30: Строка 30:
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
Компонентами реберной двусвязности графа, называют его подграфы, множества вершин которых классы эквивалентности реберной двусвязности, а множества ребер множества ребер из соответствующих классов эквивалентности.
+
Компонентами реберной двусвязности графа, называют его подграфы, множества вершин которых - классы эквивалентности реберной двусвязности, а множества ребер - множества ребер из соответствующих классов эквивалентности.
 
}}
 
}}
  
 
== См. также ==
 
== См. также ==
 
[[Отношение вершинной двусвязности]]
 
[[Отношение вершинной двусвязности]]

Версия 05:15, 23 января 2011

Реберная двусвязность

Определение:
Две вершины [math]u[/math] и [math] v[/math] графа [math]G[/math] называются реберно двусвязными, если между этими вершинами существуют два реберно непересекающихся пути.


Теорема:
Отношение реберной двусвязности является отношением эквивалентности на вершинах.
Доказательство:
[math]\triangleright[/math]

Пусть [math]R[/math] - отношение реберной двусвязности.

Рефлексивность: [math](u, u)\in R. [/math] (Очевидно)

Коммутативность: [math](u, v)\in R \Rightarrow (v, u)\in R. [/math] (Очевидно)

Транзитивность: [math](u, v)\in R [/math] и [math](v, w)\in R \Rightarrow (u, w)\in R. [/math]

Доказательство: Пусть [math]P_1,P_2 : u \rightsquigarrow v [/math] (реберно не пересекающиеся пути) и [math]Q_1,Q_2 : v \rightsquigarrow w [/math] (реберно не пересекающиеся пути).

Составим пути [math]S_1 = P_1 \circ Q_1 [/math] и [math]S_2 = P_2 \circ Q_2 [/math]. Сделаем пути [math]S_1, S_2 [/math] простыми. Получим два реберно не пересекающихся пути [math]S_1, S_2 [/math]. Действительно, [math]S_1 \land S_2 = \varnothing[/math], так как [math]P_1 \land P_2 = \varnothing [/math] (реберная двусвязность [math]u[/math] и [math]v[/math]), [math]Q_1 \land Q_2 = \varnothing [/math] (реберная двусвязность [math]w[/math] и [math]v[/math]). [math]P_1 \land Q_2 = [/math] {какой-то путь} или [math]P_2 \land Q_1 = [/math] {какой-то путь} не влияют на реберную двусвязность. Если [math]S_1 \land S_2 \neq \varnothing [/math], тогда возьмем [math]S_1 = P_1 \circ Q_2 [/math], а [math]S_2 = P_2 \circ Q_1 [/math], сделаем их простыми.

Утверждение доказано.
[math]\triangleleft[/math]

Компоненты реберной двусвязности

Определение:
Компонентами реберной двусвязности графа, называют его подграфы, множества вершин которых - классы эквивалентности реберной двусвязности, а множества ребер - множества ребер из соответствующих классов эквивалентности.


См. также

Отношение вершинной двусвязности