Отношение рёберной двусвязности — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Реберная двусвязность)
(Реберная двусвязность)
Строка 11: Строка 11:
  
  
Пусть <tex>R</tex> - отношение реберной двусвязности.
+
Пусть <tex>R</tex> - отношение реберной двусвязности.[[Файл:Onemorercon.jpg|right|600px|thumb|]]
  
 
'''Рефлексивность:''' <tex>(u, u)\in R. </tex> (Очевидно)
 
'''Рефлексивность:''' <tex>(u, u)\in R. </tex> (Очевидно)
Строка 19: Строка 19:
 
'''Транзитивность:''' <tex>(u, v)\in R </tex> и <tex>(v, w)\in R  \Rightarrow (u, w)\in R. </tex>
 
'''Транзитивность:''' <tex>(u, v)\in R </tex> и <tex>(v, w)\in R  \Rightarrow (u, w)\in R. </tex>
  
''Доказательство:''[[Файл:Onemorercon.jpg|right|600px|thumb|]]
+
''Доказательство:''
 
Пусть из <tex> w </tex> в <tex> v </tex> есть два реберно непересекающихся пути,  <tex> P_1 </tex> и <tex> P_2 </tex> соответственно.  Обозначим за <tex> C </tex> объединение двух реберно непересекающихся пути из  <tex> u </tex> в <tex> v </tex>.  
 
Пусть из <tex> w </tex> в <tex> v </tex> есть два реберно непересекающихся пути,  <tex> P_1 </tex> и <tex> P_2 </tex> соответственно.  Обозначим за <tex> C </tex> объединение двух реберно непересекающихся пути из  <tex> u </tex> в <tex> v </tex>.  
 
<tex> C </tex> будет реберно-простым циклом.
 
<tex> C </tex> будет реберно-простым циклом.

Версия 08:26, 17 января 2012

Реберная двусвязность

Определение:
Две вершины [math]u[/math] и [math] v[/math] графа [math]G[/math] называются реберно двусвязными, если между этими вершинами существуют два реберно непересекающихся пути.


Теорема:
Отношение реберной двусвязности является отношением эквивалентности на вершинах.
Доказательство:
[math]\triangleright[/math]
Пусть [math]R[/math] - отношение реберной двусвязности.
Onemorercon.jpg

Рефлексивность: [math](u, u)\in R. [/math] (Очевидно)

Симметричность: [math](u, v)\in R \Rightarrow (v, u)\in R. [/math] (Очевидно)

Транзитивность: [math](u, v)\in R [/math] и [math](v, w)\in R \Rightarrow (u, w)\in R. [/math]

Доказательство: Пусть из [math] w [/math] в [math] v [/math] есть два реберно непересекающихся пути, [math] P_1 [/math] и [math] P_2 [/math] соответственно. Обозначим за [math] C [/math] объединение двух реберно непересекающихся пути из [math] u [/math] в [math] v [/math]. [math] C [/math] будет реберно-простым циклом. Пусть вершины a и b - первые со стороны w вершины на пересечении [math] P_1 [/math] и [math] P_2 [/math] с [math] C [/math] соответственно. Рассматриваем два пути [math] wau [/math] и [math] wbu [/math] таких, что части [math] au [/math] и [math] bu [/math] идут в разные стороны по [math] C [/math] относительно часовой стрелки.

Наличие двух таких реберно непересекающихся путей очевидно, а значит [math] u [/math] и [math] w [/math] реберно двусвязны.
[math]\triangleleft[/math]

Компоненты реберной двусвязности

Определение:
Компонентами реберной двусвязности графа, называют его подграфы, множества вершин которых - классы эквивалентности реберной двусвязности, а множества ребер - множества ребер из соответствующих классов эквивалентности.


См. также

Отношение вершинной двусвязности

Визуализатор - компоненты двусвязности

Литература

  • Харари Фрэнк Теория графов = Graph theory/Пер. с англ. и предисл. В. П. Козырева. Под ред. Г.П.Гаврилова. Изд. 2-е. — М.: Едиториал УРСС, 2003. — 60 с. — ISBN 5-354-00301-6