Отношение рёберной двусвязности

Материал из Викиконспекты
Версия от 16:07, 1 февраля 2017; Дмитрий Мурзин (обсуждение | вклад) (ё)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Рёберная двусвязность[править]

Определение:
Две вершины [math]u[/math] и [math] v[/math] графа [math]G[/math] называются рёберно двусвязными (англ. edge biconnected), если между этими вершинами существуют два рёберно непересекающихся пути.


Теорема:
Отношение рёберной двусвязности является отношением эквивалентности на вершинах.
Доказательство:
[math]\triangleright[/math]
Пусть [math]R[/math] — отношение рёберной двусвязности.
К доказательству транзитивности.

Рефлексивность: [math](u, u)\in R. [/math] (Очевидно)

Симметричность: [math](u, v)\in R \Rightarrow (v, u)\in R. [/math] (Очевидно)

Транзитивность: [math](u, v)\in R [/math] и [math](v, w)\in R \Rightarrow (u, w)\in R. [/math]

Доказательство: Пусть из [math] w [/math] в [math] v [/math] есть два рёберно непересекающихся пути, [math] P_1 [/math] и [math] P_2 [/math] соответственно. Обозначим за [math] C [/math] объединение двух рёберно непересекающихся путей из [math] u [/math] в [math] v [/math]. [math] C [/math] будет рёберно-простым циклом. Пусть вершины [math]a[/math] и [math]b[/math] — первые со стороны [math]w[/math] вершины на пересечении [math] P_1 [/math] и [math] P_2 [/math] с [math] C [/math] соответственно.

Рассмотрим два пути [math] wau [/math] и [math] wbu [/math], такие, что части [math] au [/math] и [math] bu [/math] идут в разные стороны по циклу [math] C [/math]. Наличие двух таких рёберно непересекающихся путей очевидно, а значит [math] u [/math] и [math] w [/math] рёберно двусвязны.
[math]\triangleleft[/math]

Компоненты рёберной двусвязности[править]

Определение:
Компонентами рёберной двусвязности (англ. costal doubly-linked components) графа называют его подграфы, множества вершин которых - классы эквивалентности рёберной двусвязности, а множества рёбер - множества ребер из соответствующих классов эквивалентности.


См. также[править]

Источники информации[править]