Оценка сложности вычисления гиперобъема — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
 +
{| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
 +
|+
 +
|-align="center"
 +
|'''НЕТ ВОЙНЕ'''
 +
|-style="font-size: 16px;"
 +
|
 +
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
 +
 +
Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
 +
 +
Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
 +
 +
Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
 +
 +
''Антивоенный комитет России''
 +
|-style="font-size: 16px;"
 +
|Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
 +
|-style="font-size: 16px;"
 +
|[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
 +
|}
 +
 
[[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем#Индикатор Гиперобъема| Определение гиперобъема]]
 
[[Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем#Индикатор Гиперобъема| Определение гиперобъема]]
  

Версия 06:58, 1 сентября 2022

НЕТ ВОЙНЕ

24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.

Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.

Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.

Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.

Антивоенный комитет России

Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки.

Определение гиперобъема

Утверждается, что точное вычисление значения гиперобъема множества из [math]n[/math] точек [math]d[/math]-мерного пространства является #P-трудной задачей, однако допускает эффективную аппроксимацию, а именно может быть аппроксимировано за

  • полином от количества параметров,
  • полином от количества решений,
  • полином от качества аппроксимации.

#P-трудность задачи вычисления гиперобъема

Определение:
Задача #MON-CNF (Satisfability problem for monotone boolean formulas) — задача вычисления количества удовлетворяющих подстановок для монотонной булевой формулы, записанной в КНФ [math]f = \bigwedge \limits _{k=1}^n \bigvee_{i \in C_k} x_i[/math], где все дизъюнкты [math] C_k \subseteq {1,...,d}[/math]


Теорема:
Задача вычисления гиперобъема принадлежит классу #P-трудных задач
Доказательство:
[math]\triangleright[/math]

Суть доказательства состоит в сведении задачи #MON-CNF к задаче вычисления значения гиперобъема. Так как доказано [1] , что #MON-CNF является #P-трудной, то это докажет теорему.

Количество удовлетворяющих подстановок функции [math]f = \bigwedge \limits _{k=1}^n \bigvee_{i \in C_k} x_i[/math] меньше [math]2^d[/math] на количество удовлетворяющих подстановок ее отрицания [math] \overline{f} = \bigvee \limits _{k=1}^n \bigwedge_{i \in C_k} \neg x_i[/math] . Для упрощения вычислений далее будем работать с [math]\overline{f}[/math].

Для каждого конъюнкта [math]\bigwedge_{i \in C_k} \neg x_i[/math] построим соответствующий ему гиперпараллелепипед [math]A_k = [0,a^k_1]\times...\times[0,a^k_d][/math]

где

[math] a^k_i = \begin{cases} 1 & \text{if } i \in C_k \\ 2 & \text{otherwise} \end{cases} [/math].

Рассмотрим теперь [math]A = \bigcup \limits _{k=1}^n A_k[/math]. Заметим, что так как все вершины гиперпараллелепипедов [math]A_i[/math] лежат в точках с целочисленными координатами 0,1 или 2, то и [math]A[/math] можно разбить на гиперкубы вида [math]B_{x_1,...,x_d} = [x_1,x_1 + 1]\times ... \times [x_d, x_d + 1][/math], где [math]x_i \in \{0,1\}, i \in [d][/math] (то есть на гиперкубы со сторонами 1 с координатами ближайшей к началу координат вершины 0 или 1).

Более того, из-за целочисленности вершин [math]A_i[/math], каждый из этих гиперкубов лежит в хотя бы одном из [math]A_i[/math]

[math] B_{x_1,...,x_d} \subset \bigcup \limits _{k = 1}^n A_k \iff B_{x_1,...,x_d} \subset A_k \iff[/math]

А значит из определения [math]A_i[/math]

[math] \iff\exists a^k_i \geq x_i + 1 : i \in d \iff[/math]

[math]\iff \forall i : x_i = 1 \to a^k_i = 2 \iff \forall i : x_i = 1 \to i \notin C_k \iff (x_1,...,x_d) [/math] удовлетворяет [math]\bigwedge_{i \in C_k} \neg x_i[/math] для некоторого [math]k \iff (x_1,...,x_d)[/math] удовлетворяет [math]\overline{f}[/math]

Заметим, что так как [math]\mu (B_{x_1,...,x_d}) = 1 \to \mu (\bigcup \limits _{k=1}^n A_k ) = |\{(x_1,...,x_d) \in \{0,1\}^d| (x_1,...,x_d)[/math] удовлетворяет [math]\overline{f} \}|[/math]

Таким образом произвели сведение, в значит задача вычисления гиперобъема принадлежит классу #P
[math]\triangleleft[/math]

Эффективная аппроксимация нахождения значения гиперобъема

Приведем псевдокод алгоритма для аппроксимации гиперобъема объединения тел. В алгоритме, приведенном в [2] используются три оракула: PointQuery, VolumeQuery и SampleQuery, каждый из которых ошибается с вероятностью [math]\epsilon_p, \epsilon_v[/math] и [math]\epsilon_s[/math] соответственно.

Оракул

  • PointQuery(x,B) возвращает true, если точка [math]x[/math] лежит внутри [math] B[/math].
  • VolumeQuery(B) возвращает объем заданного тела [math]B[/math].
  • SampleQuery(B) для заданного тела [math]B[/math] возвращает произвольную его точку [math]x \in B[/math].


Для данного алгоритма допускаются следующие ослабления этих оракулов:

  • PointQuery(x,B) возвращает true для всех точек из некоторого тела [math] B' : \mu ((B' \backslash B) \cup (B \backslash B'))\leq \epsilon_p \mu(B)[/math]
  • VolumeQuery(B) возвращает значение [math]V' : (1-\epsilon_v)\mu(B) \leq V' \leq (1+\epsilon_v)\mu(B)[/math]
  • SampleQuery(B) возвращает произвольную точку из тела [math]B' : |f(x) - 1/\mu(B')| \lt \epsilon_s [/math]
M := 0; C := 0;
[math] \overline \epsilon := \frac{\epsilon - \epsilon_v}{1+ \epsilon_v} [/math]
[math] \overline C := \frac{(1+\epsilon_s)(1+\epsilon_v)(1+\epsilon_p)}{(1-\epsilon_v)(1-\epsilon_p)}[/math]
[math] T := \frac{24 ln (2) (1 + \overline \epsilon) n}{\overline \epsilon^2 - 8 (\overline C - 1) n}[/math]
for all [math]B_i \in S[/math] do
 compute [math]V'_i[/math] := VolumeQuery([math]B_i[/math])
od
[math] V' := \sum\limits_{i = 1}^n V'_i[/math]
while [math]C \leq T[/math] do
 choose [math]i \in [n] [/math] with probability [math]\frac{V'_i}{V'}[/math]
 x := SampleQuery([math]B_i[/math])
 repeat 
  if (C > T) then return [math]\frac {TV'}{nM} [/math]
  choose random [math]j \in [n][/math] uniformly
  C := C + 1
 until PointQuery (x, [math]B_j[/math])
 M := M + 1
od
return [math]\frac{TV'}{nM}[/math]

Время работы алгоритма составляет

[math]O(n V(d)+M S(d)+ TP(d)) = O(n V(d) + T(S(d)+P(d)) )[/math],

где [math]V(d)[/math], [math]S(d)[/math] и [math]P(d)[/math] это оценка времени работы оракулов VolumeQuery, SampleQuery и PointQuery, соответственно.

Выберем [math]\epsilon : \epsilon_s, \epsilon_p, \epsilon_v \leq \frac{\epsilon^2}{47n}[/math].

Если все используемые тела являются гиперпараллелепипедами, то время работы каждого из оракулов составляет в точности [math]O(d)[/math], таким образом алгоритм позволяет построить [math]\epsilon[/math]-аппроксимацию гиперобъема с вероятностью [math]\geq 3/4[/math] за время [math]O(\frac{nd}{\epsilon^2})[/math].

Источники

  1. Roth D. On the hardness of approximate reasoning, Artif. Intell., 82: 273–302, 1996, http://cogcomp.cs.illinois.edu/papers/hardJ.pdf
  2. Bringmann K., Friedrich T. Approximating the volume of unions and intersections of high-dimensional geometric objects, ISAAC'2008, http://www.mpi-inf.mpg.de/~kbringma/paper/2008ISAAC_Volume.pdf