ППЛГ и РСДС (PSLG и DCEL): определение, построение РСДС множества прямых — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
 
(не показано 7 промежуточных версий 4 участников)
Строка 13: Строка 13:
  
 
==РСДС==
 
==РСДС==
===Первое описание===
+
===Формальное описание===
 
Реберный список с двойными связями особенно удобен для представления ППЛГ.
 
Реберный список с двойными связями особенно удобен для представления ППЛГ.
 
Пусть задан граф <tex>G = (V, E)</tex>, <tex>V = \{v_1, v_2... v_n\}</tex>, а <tex>E = \{e_1, e_2... e_n\}</tex>. Главная компонента РСДС для планарного графа это ''реберный узел''. Между ребрами графа и реберными узлами РСДС существует взаимно однозначное соответствие, т.е. каждое ребро представлено в РСДС ровно один раз. Реберный узел РСДС, соответствующий ребру графа, например, <tex>e_k = \{v_1, v_2\} </tex> имеет 4 поля (<tex>V1, V2, F1, F2</tex>) и 2 указателя (<tex>P1, P2</tex>). Поле <tex>V1</tex> содержит начало ребра, а поле <tex>V2</tex> содержит его конец (так изначально неориентированное ребро получает условную ориентацию). Поля <tex>F1</tex> и <tex>F2</tex> содержат имена граней, лежащих слева и справа от ориентированного ребра (<tex>v_1, v_2</tex>). Указатель <tex>P1</tex> (соответственно <tex>P2</tex>) задает реберный узел, содержащий первое ребро, встречаемое вслед за ребром (<tex>v_1, v_2</tex>), при повороте от него против часовой стрелки вокруг <tex>v_1</tex> (соответственно <tex>v_2</tex>).
 
Пусть задан граф <tex>G = (V, E)</tex>, <tex>V = \{v_1, v_2... v_n\}</tex>, а <tex>E = \{e_1, e_2... e_n\}</tex>. Главная компонента РСДС для планарного графа это ''реберный узел''. Между ребрами графа и реберными узлами РСДС существует взаимно однозначное соответствие, т.е. каждое ребро представлено в РСДС ровно один раз. Реберный узел РСДС, соответствующий ребру графа, например, <tex>e_k = \{v_1, v_2\} </tex> имеет 4 поля (<tex>V1, V2, F1, F2</tex>) и 2 указателя (<tex>P1, P2</tex>). Поле <tex>V1</tex> содержит начало ребра, а поле <tex>V2</tex> содержит его конец (так изначально неориентированное ребро получает условную ориентацию). Поля <tex>F1</tex> и <tex>F2</tex> содержат имена граней, лежащих слева и справа от ориентированного ребра (<tex>v_1, v_2</tex>). Указатель <tex>P1</tex> (соответственно <tex>P2</tex>) задает реберный узел, содержащий первое ребро, встречаемое вслед за ребром (<tex>v_1, v_2</tex>), при повороте от него против часовой стрелки вокруг <tex>v_1</tex> (соответственно <tex>v_2</tex>).
 
[[Файл:DCEL4.png|300px|thumb|right|Ко второму описанию]]
 
[[Файл:DCEL4.png|300px|thumb|right|Ко второму описанию]]
===Второе описание===
+
===Неформальное описание===
 
РСДС состоит из 3 компонент:
 
РСДС состоит из 3 компонент:
 
*''Vertex'' {{---}} это точка сочленения. Содержит координаты точки. А также указатель на инцидентное ребро.
 
*''Vertex'' {{---}} это точка сочленения. Содержит координаты точки. А также указатель на инцидентное ребро.
*''Face'' {{---}} содержит указатель на наружную компоненту (некоторое ребро на его границе). Для неограниченных поверхностей это nil. Так же содержит внутреннюю компоненту, которая есть указатель на некое ребро, с которого можно начать описывать внутреннюю область (опять же, может быть nil).
+
*''Face'' {{---}} содержит указатель на некоторое ребро на его границе. Для неограниченных поверхностей это nil. Так же содержит список указателей на внутренние компоненты (дырки), то есть, по указателю на одно из инцидентных каждой дырке рёбер (nil, если дырок нет).
 
*''Half-edge'' {{---}} это ребро. Содержит указатели на точку, откуда исходит (origin), указатель на ребро близнец (twin)(направленное в другую сторону), инцидентную поверхность (incident_face), и указатели на следующее и предыдущие ребра.
 
*''Half-edge'' {{---}} это ребро. Содержит указатели на точку, откуда исходит (origin), указатель на ребро близнец (twin)(направленное в другую сторону), инцидентную поверхность (incident_face), и указатели на следующее и предыдущие ребра.
 
<pre>
 
<pre>
Строка 30: Строка 30:
 
<pre>
 
<pre>
 
struct face {
 
struct face {
     outer_component *out;
+
     half_edge *out;
     inner_components *in; (список какой-нибудь)
+
     list<half_edge*> in;  
 
};
 
};
 
</pre>
 
</pre>
Строка 47: Строка 47:
  
 
==Построение РСДС множества прямых==
 
==Построение РСДС множества прямых==
[[Файл:before.png|400px|thumb|left|было]]
+
{|align="right"
[[Файл:next.png|400px|thumb|right|Добавляем жирную прямую. [a+b] это ребро, которое было в начальном face]]
+
|-valign="top"
 +
|[[Файл:before.png|200px|thumb|right|Было]]
 +
|[[Файл:next.png|400px|thumb|right|Добавляем жирную прямую. [a+b] это ребро, которое было в начальном face]]
 +
|}
 +
<b>Этот раздел читать довольно бесполезно, нужно переписать сюда соответствующую главу из де Берга.</b>
  
 
У нас есть множество прямых. Мы хотим представить это множество в виде РСДС.
 
У нас есть множество прямых. Мы хотим представить это множество в виде РСДС.
  
 
Будем добавлять прямые по одной. Изначально у нас есть фэйс, который представляет собой всю плоскость. Алгоритм будет такой:
 
Будем добавлять прямые по одной. Изначально у нас есть фэйс, который представляет собой всю плоскость. Алгоритм будет такой:
 
 
* Локализовать рандомную точку прямой в face
 
* Локализовать рандомную точку прямой в face
 
* Найти half-edge'и, которые пересекает эта прямая(их будет не больше 2, если считать пересечение в точке за одно ребро)
 
* Найти half-edge'и, которые пересекает эта прямая(их будет не больше 2, если считать пересечение в точке за одно ребро)
Строка 78: Строка 81:
 
d->next = half_edge1;
 
d->next = half_edge1;
  
half_edge2->next = a;
+
half_edge2->next = c;
a->prev = half_edge2;
+
c->prev = half_edge2;
half_edge2->prev = c;
+
half_edge2->prev = a;
c->next = half_edge2;
+
a->next = half_edge2;
 
</pre>
 
</pre>
  
 
==См. также==
 
==См. также==
[http://cs.stackexchange.com/a/18167 Более поясняющая статья.]
+
[http://cs.stackexchange.com/a/18167 Источник.]
 +
 
 +
[[Категория:Алгоритмы]]
 +
[[Категория:Теория графов]]
 +
[[Категория:Вычислительная геометрия]]

Текущая версия на 14:51, 14 ноября 2018

Представление плоского графа с помощью РСДС
Плоский граф, ребрам которого придана произвольная ориентация для представления его с помощью РСДС. Стрелки вокруг вершин соответствуют указателям (P1, P2)
(а) РСДС, (б) входы по вершинам head_V [1..n] и (в) входы по граням head_F[1..l]

ППЛГ — Плоский прямолинейный граф.

РСДС — Реберный список с двойными связями.

ППЛГ[править]

Планарный граф, уложенный на плоскости, принято называть плоским. Плоская укладка планарного графа [math]G = (V, E)[/math] — это отображение каждой вершины из [math]V[/math] в точку на плоскости, а каждого ребра из [math]E[/math] в простую линию, соединяющую пару образов концевых вершин этого ребра так, чтобы образы ребер пересекались только в своих концевых точках. Хорошо известно, что любой планарный граф можно уложить на плоскости так, чтобы все ребра отобразились в прямолинейные отрезки.

РСДС[править]

Формальное описание[править]

Реберный список с двойными связями особенно удобен для представления ППЛГ. Пусть задан граф [math]G = (V, E)[/math], [math]V = \{v_1, v_2... v_n\}[/math], а [math]E = \{e_1, e_2... e_n\}[/math]. Главная компонента РСДС для планарного графа это реберный узел. Между ребрами графа и реберными узлами РСДС существует взаимно однозначное соответствие, т.е. каждое ребро представлено в РСДС ровно один раз. Реберный узел РСДС, соответствующий ребру графа, например, [math]e_k = \{v_1, v_2\} [/math] имеет 4 поля ([math]V1, V2, F1, F2[/math]) и 2 указателя ([math]P1, P2[/math]). Поле [math]V1[/math] содержит начало ребра, а поле [math]V2[/math] содержит его конец (так изначально неориентированное ребро получает условную ориентацию). Поля [math]F1[/math] и [math]F2[/math] содержат имена граней, лежащих слева и справа от ориентированного ребра ([math]v_1, v_2[/math]). Указатель [math]P1[/math] (соответственно [math]P2[/math]) задает реберный узел, содержащий первое ребро, встречаемое вслед за ребром ([math]v_1, v_2[/math]), при повороте от него против часовой стрелки вокруг [math]v_1[/math] (соответственно [math]v_2[/math]).

Ко второму описанию

Неформальное описание[править]

РСДС состоит из 3 компонент:

  • Vertex — это точка сочленения. Содержит координаты точки. А также указатель на инцидентное ребро.
  • Face — содержит указатель на некоторое ребро на его границе. Для неограниченных поверхностей это nil. Так же содержит список указателей на внутренние компоненты (дырки), то есть, по указателю на одно из инцидентных каждой дырке рёбер (nil, если дырок нет).
  • Half-edge — это ребро. Содержит указатели на точку, откуда исходит (origin), указатель на ребро близнец (twin)(направленное в другую сторону), инцидентную поверхность (incident_face), и указатели на следующее и предыдущие ребра.
struct vertex {
    x, y;
    half_edge *rep;  /* rep->origin == this */
};
struct face {
    half_edge *out;
    list<half_edge*> in; 
};
struct half_edge {
    half_edge *prev;     /* prev->next == this */
    half_edge *next;     /* next->prev == this */
    half_edge *twin;     /* twin->twin == this */
    vertex *origin;      /* twin->next->origin == origin &&
                            prev->twin->origin == origin */
    face *incident_face; /* prev->incident_face == incident_face && 
                            next->incident_face == incident_face */
};

Построение РСДС множества прямых[править]

Было
Добавляем жирную прямую. [a+b] это ребро, которое было в начальном face

Этот раздел читать довольно бесполезно, нужно переписать сюда соответствующую главу из де Берга.

У нас есть множество прямых. Мы хотим представить это множество в виде РСДС.

Будем добавлять прямые по одной. Изначально у нас есть фэйс, который представляет собой всю плоскость. Алгоритм будет такой:

  • Локализовать рандомную точку прямой в face
  • Найти half-edge'и, которые пересекает эта прямая(их будет не больше 2, если считать пересечение в точке за одно ребро)
  • Разбить текущий face на два face1 и face2
    • Если пересечение не в точке, разбиваем ребра на два — a, b и c, d, так как пересечения два
    • Создаем два half-edge — отрезок прямой, попадающий в фэйс
    • Перекидываем ссылки этих half-edgeй как надо
    • Не забываем поменять у half-edgeй исходного face поле incident_face на face1 и face2 соответственно
  • Мы знаем куда(в какие фэйсы — edge->twin->incident_face) пошла наша прямая. Запускаемся от них и разбиваем их аналогично. Если пересечение было в точке, перебираем faceы(next_face = edge->prev->twin->incident_face), пока не найдем нужный. Если фэйс бесконечный — идем только в одну сторону

Вот эти ссылки надо не забыть поменять:

half_edge1->origin = A;
half_edge2->origin = B;

half_edge1->twin = half_edge2;
half_edge2->twin = half_edge1;
half_edge1->incident_face = face1;
half_edge2->incident_face = face2;

half_edge1->next = b;
b->prev = half_edge1;
half_edge1->prev = d;
d->next = half_edge1;

half_edge2->next = c;
c->prev = half_edge2;
half_edge2->prev = a;
a->next = half_edge2;

См. также[править]

Источник.