Редактирование: Погрешность предиката левый поворот

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
 
{{в разработке}}
 
{{в разработке}}
Пусть две точки <tex>a(a_x, a_y), b(b_x, b_y)</tex> заданы абсолютно точно, а точка <tex> c </tex> задана как точка внешнего касания двух окружностей <tex>(o_1(x_1, y_1), r_1)</tex> и <tex>(o_2(x_2, y_2), r_2).</tex>
+
Пусть две точки заданны абсолютно точно, а одна - точка внешнего касания двух окружностей <tex>(o_1(x1, y1), r_1)</tex> и <tex>(o_2(x2, y2), r_2).</tex>
 +
Обозначим точку касания как <tex>c.</tex> Тогда:
  
 
<tex>\overrightarrow{o_1c} = \frac{r_1}{r_1 + r_2} \cdot \overrightarrow{o_1o_2}, \\
 
<tex>\overrightarrow{o_1c} = \frac{r_1}{r_1 + r_2} \cdot \overrightarrow{o_1o_2}, \\
Строка 58: Строка 59:
 
+ |r_2(b_x - a_x)(y_1 - a_y)| \cdot |(F(3, 4, 5, 6, 7, 15) - 1)| + \\
 
+ |r_2(b_x - a_x)(y_1 - a_y)| \cdot |(F(3, 4, 5, 6, 7, 15) - 1)| + \\
 
+ |r_1(b_y - a_y)(x_2 - a_x)| \cdot |(F(8, 9, 12, 13, 14, 15) - 1)| + \\
 
+ |r_1(b_y - a_y)(x_2 - a_x)| \cdot |(F(8, 9, 12, 13, 14, 15) - 1)| + \\
+ |r_2(b_y - a_y)(x_1 - a_x)| \cdot |(F(10, 11, 12, 13, 14, 15) - 1)|</tex>
+
+ |r_2(b_y - a_y)(x_1 - a_x)| \cdot |(F(10, 11, 12, 13, 14, 15) - 1)| = \\
 
+
</tex>
Теперь раскрываем скобки во всех <tex>F</tex>, сокращаем единицы. Пользуемся свойством, что <tex>|\sum{p_i}| \leq \sum{|p_i|}</tex>,
 
потом вспоминаем, что <tex> |\delta_i| \leq \varepsilon_m </tex>.
 
Получаем следующее:
 
 
 
<tex> |k - \tilde{k}| \leq \\
 
\leq |r_1(b_x - a_x)(y_2 - a_y)| \cdot (6\varepsilon_m + 15\varepsilon_m^2 + 20\varepsilon_m^3 + 15\varepsilon_m^4 + 6\varepsilon_m^5 + \varepsilon_m^6) + \\
 
+ |r_2(b_x - a_x)(y_1 - a_y)| \cdot (6\varepsilon_m + 15\varepsilon_m^2 + 20\varepsilon_m^3 + 15\varepsilon_m^4 + 6\varepsilon_m^5 + \varepsilon_m^6) + \\
 
+ |r_1(b_y - a_y)(x_2 - a_x)| \cdot (6\varepsilon_m + 15\varepsilon_m^2 + 20\varepsilon_m^3 + 15\varepsilon_m^4 + 6\varepsilon_m^5 + \varepsilon_m^6) + \\
 
+ |r_2(b_y - a_y)(x_1 - a_x)| \cdot (6\varepsilon_m + 15\varepsilon_m^2 + 20\varepsilon_m^3 + 15\varepsilon_m^4 + 6\varepsilon_m^5 + \varepsilon_m^6) = \\
 
= (|r_1(b_x - a_x)(y_2 - a_y)| + |r_2(b_x - a_x)(y_1 - a_y)| + |r_1(b_y - a_y)(x_2 - a_x)| + \\
 
+ |r_2(b_y - a_y)(x_1 - a_x)|) \cdot
 
(6\varepsilon_m + 15\varepsilon_m^2 + 20\varepsilon_m^3 + 15\varepsilon_m^4 + 6\varepsilon_m^5 + \varepsilon_m^6)</tex>
 
  
Пусть
 
  
<tex> t = (|r_1(b_x - a_x)(y_2 - a_y)| + |r_2(b_x - a_x)(y_1 - a_y)| + |r_1(b_y - a_y)(x_2 - a_x)| + \\
+
Пусть <tex> t = (|(b_x - a_x) (c_y - a_y)| + |(b_y - a_y) (c_x - a_x)|).</tex> Получаем, что
+ |r_2(b_y - a_y)(x_1 - a_x)|).</tex>  
 
  
Получаем, что
+
<tex> \epsilon = |v - \tilde{v}| \leq t \cdot (4 \varepsilon_m + 6 \varepsilon_m^2 + 4 \varepsilon_m^3 + \varepsilon_m^4). </tex>
  
<tex> \epsilon = |k - \tilde{k}| \leq t \cdot (6\varepsilon_m + 15\varepsilon_m^2 + 20\varepsilon_m^3 + 15\varepsilon_m^4 + 6\varepsilon_m^5 + \varepsilon_m^6). </tex>
+
<tex>\tilde {t} = (|(b_x - a_x) (c_y - a_y) (1 + \delta_1) (1 + \delta_2) (1 + \delta_3)| + \\
 +
+ |(b_y - a_y) (c_x - a_x) (1 + \delta_4) (1 + \delta_5) (1 + \delta_6)|) (1 + \delta_7) \geq \\
 +
\geq |(b_x - a_x) (c_y - a_y) (1 - \varepsilon_m)^3)|(1 - \varepsilon_m) + \\
 +
+ |(b_y - a_y) (c_x - a_x) (1 - \varepsilon_m)^3)|(1 - \varepsilon_m) = \\
 +
= |(b_x - a_x) (c_y - a_y)| (1 - \varepsilon_m)^4 + |(b_y - a_y) (c_x - a_x)| (1 - \varepsilon_m)^4 = \\
 +
= (|(b_x - a_x) (c_y - a_y)| + |(b_y - a_y) (c_x - a_x)|) (1 - \varepsilon_m)^4 = t \cdot (1 - \varepsilon_m)^4</tex>  
  
 
Итого:
 
Итого:
  
<tex> t \leq \tilde{t} \frac{1}{(1 - \varepsilon_m)^6} = \tilde{t} (1 + 6 \varepsilon_m + 21 \varepsilon_m^2 + 56 \varepsilon_m^3 + \ldots) </tex>
+
<tex> t \leq \tilde{t} \frac{1}{(1 - \varepsilon_m)^4} = \tilde{t} (1 + 4 \varepsilon_m + 10 \varepsilon_m^2 + 20 \varepsilon_m^3 + \cdots) </tex>
 
 
<tex> \epsilon = |k - \tilde{k}| \leq \tilde{\epsilon} \leq \tilde{t} (1 +  6 \varepsilon_m + 21 \varepsilon_m^2 + \ldots) (6 \varepsilon_m + 15 \varepsilon_m^2 + 20 \varepsilon_m^3 + \ldots) </tex>
 
  
[[Категория: Вычислительная геометрия]]
+
<tex> \epsilon = |v - \tilde{v}| \leq \tilde{\epsilon} \leq \tilde{t} (1 +  4 \varepsilon_m + 10 \varepsilon_m^2 + 20 \varepsilon_m^3 + \cdots) (4 \varepsilon_m + 6 \varepsilon_m^2 + 4 \varepsilon_m^3 + \varepsilon_m^4) </tex>

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблон, используемый на этой странице: