Редактирование: Поиск k-ой порядковой статистики

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
 +
{{В разработке}}
 +
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
Строка 7: Строка 9:
 
=== Описание алгоритма ===
 
=== Описание алгоритма ===
  
Будем использовать процедуру рассечения массива элементов из алгоритма сортировки [[Быстрая сортировка|QuickSort]]. Пусть нам надо найти <tex>k</tex>-ую порядковую статистику, а после рассечения опорный элемент встал на позицию <tex>m</tex>. Возможно три случая:
+
Будем использовать процедуру рассечения массива элементов из алгоритма сортировки QuickSort. Пусть нам надо найти <tex>k</tex>-ую порядковую статистику, а после рассечения опорный элемент встал на позицию <tex>m</tex>. Возможно три случая:
  
 
* '''k = m'''. Порядковая статистика найдена.
 
* '''k = m'''. Порядковая статистика найдена.
Строка 15: Строка 17:
 
=== Код алгоритма ===
 
=== Код алгоритма ===
  
Ниже представлен код представленного алгоритма. При реализации, однако, вместо рекурсивных вызовов изменяются границы поиска статистики во внешнем цикле. В коде считаем, что процедура '''partition''' принимает массив и границы отрезка, который будет рассечён (причём правая граница отрезка не включается), и возвращает индекс опорного элемента. Также считается, что массив индексируется с нуля.
+
Ниже представлен код представленного алгоритма. При реализации, однако, вместо рекурсивных вызовов изменяются границы поиска статистики во внешнем цикле. В коде счититаем, что процедура '''partition''' принимает массив и границы отрезка, который будет рассечён (причём правая граница отрезка не включается) и возвращает индекс опорного элемента. Также, считается, что массив индексируется с нуля.
  
 
  '''int''' findOrderStatistic('''int[]''' array, '''int''' k) {
 
  '''int''' findOrderStatistic('''int[]''' array, '''int''' k) {
Строка 29: Строка 31:
 
     }
 
     }
 
     '''else''' {
 
     '''else''' {
 +
      k -= mid + 1;
 
       left = mid + 1;
 
       left = mid + 1;
 
     }
 
     }
Строка 36: Строка 39:
 
=== Анализ времени работы ===
 
=== Анализ времени работы ===
  
Аналогично QuickSort, может возникнуть такой же худший случай (процедура '''partition''' возвращает каждый раз левую или правую границу рассматриваемой части), при котором время работы составит <tex>\Omega(n^2)</tex>. Однако, если считать, что '''partition''' возвращает все элементы рассматриваемого отрезка с равной вероятностью, то можно оценить матожидание времени работы как <tex>O(n)</tex>.
+
Аналогично QuickSort, может возникнуть такой же худщий случай (процедура '''partition''' возвращает каждый раз левую или правую границу рассматриваемой части), при котором время работы составит <tex>\Omega(n^2)</tex>. Однако, если считать, что '''partition''' возвращает все элементы рассматриваемого отрезка с равной вероятностью, то можно оценить матожидание времени работы как <tex>O(n)</tex>.
  
 
Будем оценивать количество сравнений. При поиске статистики в массиве размера <tex>n</tex> функция '''partition''' (точнее, одна из распространённых вариаций) совершает не более <tex>n - 1</tex> сравнений. Далее, в зависимости от <tex>k</tex> выбирается левая или правая половины (или вообще алгоритм завершает работу). Оценку проводим сверху, то есть, будем считать, что каждый раз выбирается большая половина.
 
Будем оценивать количество сравнений. При поиске статистики в массиве размера <tex>n</tex> функция '''partition''' (точнее, одна из распространённых вариаций) совершает не более <tex>n - 1</tex> сравнений. Далее, в зависимости от <tex>k</tex> выбирается левая или правая половины (или вообще алгоритм завершает работу). Оценку проводим сверху, то есть, будем считать, что каждый раз выбирается большая половина.
Строка 57: Строка 60:
  
 
Для довершения доказательства необходима проверка базы индукции, но она тривиальна: для выборки порядковой статистики из одного элемента сравнений не требуется: <tex>T(1) = 0 < 4</tex>. Итого, мы доказали, что <tex>T(n) \le 4n</tex>, следовательно, <tex>T(n) = O(n)</tex>
 
Для довершения доказательства необходима проверка базы индукции, но она тривиальна: для выборки порядковой статистики из одного элемента сравнений не требуется: <tex>T(1) = 0 < 4</tex>. Итого, мы доказали, что <tex>T(n) \le 4n</tex>, следовательно, <tex>T(n) = O(n)</tex>
 
== Ссылки ==
 
* [http://en.wikipedia.org/wiki/BFPRT Selection algorithm — Wikipedia]
 
* Donald Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching, Third Edition. Addison-Wesley, 1997. ISBN 0-201-89685-0. Section 5.3.3: Minimum-Comparison Selection, pp.207–219.
 

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблон, используемый на этой странице: