Поиск k-ой порядковой статистики за линейное время — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
 
==Идея алгоритма==
 
==Идея алгоритма==
Этот алгоритм является модификацией алгоритма [[Поиск k-ой порядковой статистики|поиска k-ой порядковой статистики]]. Важное отличие заключается в том, что время работы алгоритма в наихудшем случае — <tex>O(n)</tex>, где <tex>n</tex> — количество элементов в множестве. Главная идея алгоритма заключается в том, чтобы ''гарантировать'' хорошее разбиение массива. Алгоритм выбирает такой рассекающий элемент, что количество чисел, которые меньше рассекающего элемента, не менее <tex>\frac{3n}{10}</tex>. Элементов же больших опорного элемента, также не менее <tex>\frac{3n}{10}</tex>. Благодаря этому алгоритм работает за линейное время в любом случае.
+
Этот алгоритм является модификацией алгоритма [[Поиск k-ой порядковой статистики|поиска k-ой порядковой статистики]]. Важное отличие заключается в том, что время работы алгоритма в наихудшем случае — <tex>O(n)</tex>, где <tex>n</tex> — количество элементов в множестве. Главная идея алгоритма заключается в том, чтобы ''гарантировать'' хорошее разбиение массива. Алгоритм выбирает такой рассекающий элемент, что количество чисел, которые меньше рассекающего элемента, не менее <tex dpi = "170">\frac{3n}{10}</tex>. Элементов же больших опорного элемента, также не менее <tex dpi = "170">\frac{3n}{10}</tex>. Благодаря этому алгоритм работает за линейное время в любом случае.
  
 
== Описание алгоритма ==
 
== Описание алгоритма ==
Строка 23: Строка 23:
 
[[Файл:поиск2.png| 300px]]
 
[[Файл:поиск2.png| 300px]]
  
На рисунке обозначены закрашенные области, в левом верхнем и в правом нижнем углах. В эти области попали все элементы, которые точно меньше или больше рассекающего элемента, соответственно. В каждой области по <tex> 8 </tex> элементов, всего же в массиве <tex> 25 </tex>, то есть мы получили хорошее (то есть соответствующее нашему утверждению) разбиение массива относительно опорного элемента, так как <tex> 8  > \frac{3 \cdot 25}{10}</tex>. Теперь докажем, что алгоритм также хорошо выбирает опорный элемент и в общем случае.
+
На рисунке обозначены закрашенные области, в левом верхнем и в правом нижнем углах. В эти области попали все элементы, которые точно меньше или больше рассекающего элемента, соответственно. В каждой области по <tex> 8 </tex> элементов, всего же в массиве <tex> 25 </tex>, то есть мы получили хорошее (то есть соответствующее нашему утверждению) разбиение массива относительно опорного элемента, так как <tex> 8  > </tex> <tex dpi = "170">\frac{3 \cdot 25}{10}</tex>. Теперь докажем, что алгоритм также хорошо выбирает опорный элемент и в общем случае.
  
Cначала определим нижнюю границу для количества элементов, превышающих по величине рассекающий элемент <tex>x</tex>. В общем случае как минимум половина медиан, найденных на втором шаге, больше или равны медианы медиан <tex>x</tex>. Таким образом, как минимум <tex>n / 10</tex> групп содержат по <tex>3</tex> превышающих величину <tex>x</tex>, за исключение группы, в которой меньше <tex>5</tex> элементов и ещё одной группы, содержащей сам элемент <tex>x</tex>. Таким образом получаем, что количество элементов больших  <tex>x</tex>, не менее <tex>\frac{3n}{10}</tex>.
+
Cначала определим нижнюю границу для количества элементов, превышающих по величине рассекающий элемент <tex>x</tex>. В общем случае как минимум половина медиан, найденных на втором шаге, больше или равны медианы медиан <tex>x</tex>. Таким образом, как минимум <tex>n / 10</tex> групп содержат по <tex>3</tex> превышающих величину <tex>x</tex>, за исключение группы, в которой меньше <tex>5</tex> элементов и ещё одной группы, содержащей сам элемент <tex>x</tex>. Таким образом получаем, что количество элементов больших  <tex>x</tex>, не менее <tex dpi = "170">\frac{3n}{10}</tex>.
  
Проведя аналогичные рассуждения для элементов, которые меньше по величине, чем рассекающий элемент <tex>x</tex>, мы получим, что как минимум <tex>\frac{3n}{10}</tex> меньше, чем элемент <tex>x</tex>. Теперь проведем анализ времени работы алгоритма.
+
Проведя аналогичные рассуждения для элементов, которые меньше по величине, чем рассекающий элемент <tex>x</tex>, мы получим, что как минимум <tex dpi = "170">\frac{3n}{10}</tex> меньше, чем элемент <tex>x</tex>. Теперь проведем анализ времени работы алгоритма.
  
 
[[Файл:поиск5.png| 300px]]
 
[[Файл:поиск5.png| 300px]]
Строка 34: Строка 34:
 
Пусть <tex>T(n)</tex> — время работы алгоритма для <tex>n</tex> элементов, тогда оно не больше, чем сумма:
 
Пусть <tex>T(n)</tex> — время работы алгоритма для <tex>n</tex> элементов, тогда оно не больше, чем сумма:
 
# времени работы на сортировку групп и разбиение по рассекающему элементу, то есть <tex>Cn</tex>;
 
# времени работы на сортировку групп и разбиение по рассекающему элементу, то есть <tex>Cn</tex>;
# времени работы для поиска медианы медиан, то есть <tex>T(\frac{n}{5})</tex>;
+
# времени работы для поиска медианы медиан, то есть <tex>T(</tex><tex dpi = "170">\frac{n}{5}</tex> <tex>) </tex>;
# времени работы для поиска <tex>k</tex>-го элемента в одной из двух частей массива, то есть <tex>T(s)</tex>, где <tex>s</tex> — количество элементов в этой части. Но <tex>s</tex> не превосходит <tex>\frac{7n}{10}</tex>, так как чисел, меньших рассекающего элемента, не менее <tex>\frac{3n}{10}</tex> — это <tex>\frac{n}{10}</tex> медиан, меньших медианы медиан, плюс не менее <tex>\frac{2n}{10}</tex> элементов, меньших этих медиан. С другой стороны, чисел, больших рассекающего элемента, так же не менее <tex>\frac{3n}{10}</tex>, следовательно  <tex> s \le \frac{7n}{10}</tex>, то есть в худшем случае <tex> s = \frac{7n}{10}</tex>.  
+
# времени работы для поиска <tex>k</tex>-го элемента в одной из двух частей массива, то есть <tex>T(s)</tex>, где <tex>s</tex> — количество элементов в этой части. Но <tex>s</tex> не превосходит <tex dpi = "170">\frac{7n}{10}</tex>, так как чисел, меньших рассекающего элемента, не менее <tex dpi = "170">\frac{3n}{10}</tex> — это <tex dpi = "170">\frac{n}{10}</tex> медиан, меньших медианы медиан, плюс не менее <tex dpi = "170">\frac{2n}{10}</tex> элементов, меньших этих медиан. С другой стороны, чисел, больших рассекающего элемента, так же не менее <tex dpi = "170">\frac{3n}{10}</tex>, следовательно  <tex> s \le </tex> <tex dpi = "170">\frac{7n}{10}</tex>, то есть в худшем случае <tex> s = </tex> <tex dpi = "170">\frac{7n}{10}</tex>.  
  
 
Тогда получаем, что   
 
Тогда получаем, что   
<tex>T(n) \le T(\frac{n}{5}) + T(\frac{7n}{10}) + Cn </tex>
+
<tex>T(n) \le T(</tex><tex dpi = "170">\frac{n}{5}</tex><tex>) + T(</tex><tex dpi = "170">\frac{7n}{10}</tex><tex>) + Cn </tex>
  
 
Покажем, что для всех <tex> n </tex> выполняется неравенство <tex>T(n) \le 10Cn </tex>.
 
Покажем, что для всех <tex> n </tex> выполняется неравенство <tex>T(n) \le 10Cn </tex>.
Строка 44: Строка 44:
 
Докажем по индукции:
 
Докажем по индукции:
 
# Предположим, что наше неравенство <tex>T(n) \le 10Cn </tex> выполняется при малых <tex> n </tex>, для некоторой достаточно большой константы <tex> C </tex>.  
 
# Предположим, что наше неравенство <tex>T(n) \le 10Cn </tex> выполняется при малых <tex> n </tex>, для некоторой достаточно большой константы <tex> C </tex>.  
# Тогда, по предположению индукции, <tex>T(\frac{n}{5}) \le 10C\frac{n}{5} = 2Cn</tex> и <tex> T(\frac{7n}{10}) \le 10C\frac{7n}{10} = 7Cn</tex>, тогда
+
# Тогда, по предположению индукции, <tex>T(</tex><tex dpi = "170">\frac{n}{5}</tex><tex>) \le 10C </tex><tex dpi = "170">\frac{n}{5}</tex><tex> = 2Cn</tex> и <tex> T(</tex><tex dpi = "170">\frac{7n}{10}</tex><tex>) \le 10C </tex><tex dpi = "170">\frac{7n}{10}</tex><tex> = 7Cn</tex>, тогда
<tex>T(n) \le T(\frac{n}{5}) + T(\frac{7n}{10}) + Cn = 2Cn + 7Cn + Cn = 10Cn \Rightarrow T(n) \le 10Cn</tex>
+
<tex>T(n) \le T(</tex><tex dpi = "170">\frac{n}{5}</tex><tex>) + T(</tex><tex dpi = "170">\frac{7n}{10}</tex><tex>) + Cn = 2Cn + 7Cn + Cn = 10Cn \Rightarrow T(n) \le 10Cn</tex>
  
 
Так как <tex>T(n) \le 10Cn </tex>, то время работы алгоритма <tex>O(n)</tex>
 
Так как <tex>T(n) \le 10Cn </tex>, то время работы алгоритма <tex>O(n)</tex>

Версия 00:41, 4 июня 2015

Идея алгоритма

Этот алгоритм является модификацией алгоритма поиска k-ой порядковой статистики. Важное отличие заключается в том, что время работы алгоритма в наихудшем случае — [math]O(n)[/math], где [math]n[/math] — количество элементов в множестве. Главная идея алгоритма заключается в том, чтобы гарантировать хорошее разбиение массива. Алгоритм выбирает такой рассекающий элемент, что количество чисел, которые меньше рассекающего элемента, не менее [math]\frac{3n}{10}[/math]. Элементов же больших опорного элемента, также не менее [math]\frac{3n}{10}[/math]. Благодаря этому алгоритм работает за линейное время в любом случае.

Описание алгоритма

  1. Все [math]n[/math] элементов входного массива разбиваются на группы по пять элементов, в последней группе будет [math]n \bmod 5[/math] элементов. Эта группа может оказаться пустой при [math]n[/math] кратных [math]5[/math].
  2. Сначала сортируется каждая группа, затем из каждой группы выбирается медиана.
  3. Путем рекурсивного вызова шага определяется медиана [math]x[/math] из множества медиан (верхняя медиана в случае чётного количества), найденных на втором шаге. Найденный элемент массива [math]x[/math] используется как рассекающий (за [math]i[/math] обозначим его индекс).
  4. Массив делится относительно рассекающего элемента [math]x[/math].
  5. Если [math]i = k[/math], то возвращается значение [math]x[/math]. Иначе запускается рекурсивно поиск элемента в одной из частей массива: [math]k[/math]-ой статистики в левой части при [math]i \gt k[/math] или [math](k - i - 1)[/math]-ой статистики в правой части при [math]i \lt k[/math]

Пример работы алгоритма

Рассмотрим работу алгоритма на массиве из [math] 25 [/math] элементов, обозначенных кружками.

На вход подается массив, разобьем элементы на группы по 5 элементов. Отсортируем элементы каждой группы и выберем медианы. Полученные медианы групп отмечены белыми кружками.

Поиск.png


Рекурсивно вызовемся от медиан групп и получим рассекающий элемент. На рисунке он обозначен белым кружком, внутри которого изображен символ [math] x [/math].


Поиск2.png

На рисунке обозначены закрашенные области, в левом верхнем и в правом нижнем углах. В эти области попали все элементы, которые точно меньше или больше рассекающего элемента, соответственно. В каждой области по [math] 8 [/math] элементов, всего же в массиве [math] 25 [/math], то есть мы получили хорошее (то есть соответствующее нашему утверждению) разбиение массива относительно опорного элемента, так как [math] 8 \gt [/math] [math]\frac{3 \cdot 25}{10}[/math]. Теперь докажем, что алгоритм также хорошо выбирает опорный элемент и в общем случае.

Cначала определим нижнюю границу для количества элементов, превышающих по величине рассекающий элемент [math]x[/math]. В общем случае как минимум половина медиан, найденных на втором шаге, больше или равны медианы медиан [math]x[/math]. Таким образом, как минимум [math]n / 10[/math] групп содержат по [math]3[/math] превышающих величину [math]x[/math], за исключение группы, в которой меньше [math]5[/math] элементов и ещё одной группы, содержащей сам элемент [math]x[/math]. Таким образом получаем, что количество элементов больших [math]x[/math], не менее [math]\frac{3n}{10}[/math].

Проведя аналогичные рассуждения для элементов, которые меньше по величине, чем рассекающий элемент [math]x[/math], мы получим, что как минимум [math]\frac{3n}{10}[/math] меньше, чем элемент [math]x[/math]. Теперь проведем анализ времени работы алгоритма.

Поиск5.png

Анализ времени работы алгоритма

Пусть [math]T(n)[/math] — время работы алгоритма для [math]n[/math] элементов, тогда оно не больше, чем сумма:

  1. времени работы на сортировку групп и разбиение по рассекающему элементу, то есть [math]Cn[/math];
  2. времени работы для поиска медианы медиан, то есть [math]T([/math][math]\frac{n}{5}[/math] [math]) [/math];
  3. времени работы для поиска [math]k[/math]-го элемента в одной из двух частей массива, то есть [math]T(s)[/math], где [math]s[/math] — количество элементов в этой части. Но [math]s[/math] не превосходит [math]\frac{7n}{10}[/math], так как чисел, меньших рассекающего элемента, не менее [math]\frac{3n}{10}[/math] — это [math]\frac{n}{10}[/math] медиан, меньших медианы медиан, плюс не менее [math]\frac{2n}{10}[/math] элементов, меньших этих медиан. С другой стороны, чисел, больших рассекающего элемента, так же не менее [math]\frac{3n}{10}[/math], следовательно [math] s \le [/math] [math]\frac{7n}{10}[/math], то есть в худшем случае [math] s = [/math] [math]\frac{7n}{10}[/math].

Тогда получаем, что [math]T(n) \le T([/math][math]\frac{n}{5}[/math][math]) + T([/math][math]\frac{7n}{10}[/math][math]) + Cn [/math]

Покажем, что для всех [math] n [/math] выполняется неравенство [math]T(n) \le 10Cn [/math].

Докажем по индукции:

  1. Предположим, что наше неравенство [math]T(n) \le 10Cn [/math] выполняется при малых [math] n [/math], для некоторой достаточно большой константы [math] C [/math].
  2. Тогда, по предположению индукции, [math]T([/math][math]\frac{n}{5}[/math][math]) \le 10C [/math][math]\frac{n}{5}[/math][math] = 2Cn[/math] и [math] T([/math][math]\frac{7n}{10}[/math][math]) \le 10C [/math][math]\frac{7n}{10}[/math][math] = 7Cn[/math], тогда

[math]T(n) \le T([/math][math]\frac{n}{5}[/math][math]) + T([/math][math]\frac{7n}{10}[/math][math]) + Cn = 2Cn + 7Cn + Cn = 10Cn \Rightarrow T(n) \le 10Cn[/math]

Так как [math]T(n) \le 10Cn [/math], то время работы алгоритма [math]O(n)[/math]

Литература

  • Кормен, Т., Лейзерсон, Ч., Ривест, Р., Штайн, К. Алгоритмы: построение и анализ

Ссылки