Покрытие рёбер графа путями — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Покрытие ребер графа путями)
Строка 1: Строка 1:
 
==Покрытие ребер графа путями==
 
==Покрытие ребер графа путями==
 
Следующее утверждение являются следствием из [[Эйлеров_цикл,_Эйлеров_путь,_Эйлеровы_графы,_Эйлеровость_орграфов|критерия Эйлеровости]] [[Основные определения теории графов|графа]]:
 
Следующее утверждение являются следствием из [[Эйлеров_цикл,_Эйлеров_путь,_Эйлеровы_графы,_Эйлеровость_орграфов|критерия Эйлеровости]] [[Основные определения теории графов|графа]]:
{{Утверждение|statement=
+
{{Теорема|statement=
 
Пусть <tex>G</tex> - [[Эйлеров_цикл,_Эйлеров_путь,_Эйлеровы_графы,_Эйлеровость_орграфов#cite_note-almost-0|почти связный]] граф, в котором <tex>2N</tex> вершин имеют нечетную [[Основные определения теории графов|степень]]. Тогда множество ребер <tex>G</tex> можно покрыть <tex>N</tex> реберно простыми путями.
 
Пусть <tex>G</tex> - [[Эйлеров_цикл,_Эйлеров_путь,_Эйлеровы_графы,_Эйлеровость_орграфов#cite_note-almost-0|почти связный]] граф, в котором <tex>2N</tex> вершин имеют нечетную [[Основные определения теории графов|степень]]. Тогда множество ребер <tex>G</tex> можно покрыть <tex>N</tex> реберно простыми путями.
 +
|proof=
 +
'''Необходимость'''<br/>
 +
Докажем, что <tex>G</tex> можно покрыть <tex>N</tex> реберно-простыми цепями.<br/>
 +
Добавим в <tex>G N</tex> ребер <tex>uv</tex> таки, что <tex>uv</tex> &notin; <tex>G</tex> и степени вершин <tex>u</tex> и <tex>v</tex> нечетные. Тогда степени всех вершин станут четными, и в <tex>G</tex> появится Эйлеров цикл <tex>c</tex>. Удалим из <tex>c</tex> добавленные ребра.<br/>
 +
Тогда цикл <tex>c</tex> распадется на <tex>N</tex> путей, которым будут принадлежать все ребра <tex>G</tex>.
 +
 +
'''Достаточность'''
 +
 
}}
 
}}
  

Версия 00:15, 14 октября 2010

Покрытие ребер графа путями

Следующее утверждение являются следствием из критерия Эйлеровости графа:

Теорема:
Пусть [math]G[/math] - почти связный граф, в котором [math]2N[/math] вершин имеют нечетную степень. Тогда множество ребер [math]G[/math] можно покрыть [math]N[/math] реберно простыми путями.
Доказательство:
[math]\triangleright[/math]

Необходимость
Докажем, что [math]G[/math] можно покрыть [math]N[/math] реберно-простыми цепями.
Добавим в [math]G N[/math] ребер [math]uv[/math] таки, что [math]uv[/math][math]G[/math] и степени вершин [math]u[/math] и [math]v[/math] нечетные. Тогда степени всех вершин станут четными, и в [math]G[/math] появится Эйлеров цикл [math]c[/math]. Удалим из [math]c[/math] добавленные ребра.
Тогда цикл [math]c[/math] распадется на [math]N[/math] путей, которым будут принадлежать все ребра [math]G[/math].

Достаточность
[math]\triangleleft[/math]

См. также

Эйлеров цикл, Эйлеров путь, Эйлеровы графы, Эйлеровость орграфов

Источники

1. Ф.Харари. Теория графов. Москва, издательство "Едиториал УРСС". 2003 г.