Полукольца и алгебры — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Дискретная математика - не наука, ее придумали те, кто ей 'занимается', так-то, ребятки.)
 
(Отмена правки 17933 участника Yonkaps (обсуждение))
 
(не показано 30 промежуточных версий 7 участников)
Строка 1: Строка 1:
[[Математический_анализ_1_курс#.D0.93.D0.BB.D0.B0.D0.B2.D0.B0_V_.D0.A0.D1.8F.D0.B4.D1.8B|на главную <<]] [[Мера на полукольце множеств|>>]]
+
[[Математический_анализ_2_курс|на главную <<]] [[Мера на полукольце множеств|>>]]
  
 
== Полукольцо ==
 
== Полукольцо ==
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
Пусть <tex> X </tex> - некоторое множество, <tex> \mathcal R </tex> - совокупность его подмножеств(необязательно всех). Пара <tex> (X, \mathcal R) </tex> называется '''полукольцом''', если:
+
Пусть <tex> X </tex> некоторое множество, <tex> \mathcal R </tex> совокупность его подмножеств (не обязательно всех). Пара <tex> (X, \mathcal R) </tex> называется '''полукольцом''', если:
1) <tex> \varnothing \in \mathcal R </tex>
+
# <tex> \varnothing \in \mathcal R </tex>
 
+
# <tex> A, B \in \mathcal R \Rightarrow A \cap B \in \mathcal R </tex> (замкнутость относительно пересечения)
2) <tex> A, B \in \mathcal R \Rightarrow A \cap B \in \mathcal R </tex>
+
# <tex> A, B \in \mathcal R, A \subset B \Rightarrow \exists D_1, \ldots, D_n, \ldots \in \mathcal R: B \setminus A = \bigcup\limits_n D_n, D_n \in \mathcal R, D_i \cap D_j = \varnothing </tex> для <tex> i \ne j </tex> (далее просто будем говорить, что эти множества дизъюнктны).
 
 
3) <tex> A \cup B, A, B \in \mathcal R \Rightarrow B \setminus A = \bigcup\limits_n D_n, D_n \in \mathcal R, D_i \cap D_j = \varnothing </tex> для <tex> i \ne j </tex> (далее просто будем говорить, что эти множества дизъюнктны).
 
 
}}
 
}}
  
Простой пример полукольца: <tex> X = \mathbb R, \mathcal R = \{\ [a; b) | a, b \in \mathbb R, a \le b\ \} </tex>.
+
Простой пример полукольца: <tex> X = \mathbb R, \mathcal R = \{\,[a; b) \mid a, b \in \mathbb R, a \le b\,\} </tex>.
 
Элементы этого полукольца называются '''ячейками'''.
 
Элементы этого полукольца называются '''ячейками'''.
  
Строка 25: Строка 23:
 
Пусть теперь утверждение выполнялось для <tex> n - 1 </tex> множества. Тогда получаем:
 
Пусть теперь утверждение выполнялось для <tex> n - 1 </tex> множества. Тогда получаем:
  
<tex> B \setminus \bigcup\limits_{j = 1}^{n} A_j = ( B \setminus \bigcup\limits_{j = 1}^{n-1} A_j\ ) \setminus A_n = (\bigcup\limits_{k} D_k) \setminus A_n = \bigcup\limits_{k}(D_k \setminus A_n) = \bigcup\limits_{k}(\bigcup\limits_{j} D_{k_j}) = \bigcup\limits_{l} D_l </tex>
+
<tex> B \setminus \bigcup\limits_{j = 1}^{n} A_j = ( B \setminus \bigcup\limits_{j = 1}^{n-1} A_j\ ) \setminus A_n = (\bigcup\limits_{k} D_k) \setminus A_n = \bigcup\limits_{k}(D_k \setminus A_n) = \bigcup\limits_{k}(\bigcup\limits_{j} D_{k,j}) = \bigcup\limits_{l} D_l </tex>
  
 
Очевидно, множества из получившегося объединения дизъюнктны, как и требуется, поэтому утверждение выполняется для любого <tex> n </tex>.
 
Очевидно, множества из получившегося объединения дизъюнктны, как и требуется, поэтому утверждение выполняется для любого <tex> n </tex>.
Строка 32: Строка 30:
 
{{Утверждение
 
{{Утверждение
 
|statement=
 
|statement=
Пусть <tex> B_1, B_2, \ldots, B_n \in \mathcal R </tex>. Тогда <tex> \bigcup\limits_{n} B_n = \bigcup\limits_{k} D_k, D_k \in \mathcal R, D_k</tex> дизъюнктны.
+
Пусть <tex> B_1, B_2, \ldots, B_n, \ldots \in \mathcal R </tex>. Тогда <tex> \bigcup\limits_{n} B_n = \bigcup\limits_{k} D_k, D_k \in \mathcal R, D_k</tex> дизъюнктны.
 
|proof=
 
|proof=
<tex> \bigcup\limits_{n} B_n = B_1 \cup (B_2 \setminus B_1) \cup (B_3 \setminus B_1) \cup \ldots \cup (B_n \setminus B_1) \cup \ldots </tex>
+
<tex> \bigcup\limits_{n} B_n = B_1 \cup (B_2 \setminus B_1) \cup (B_3 \setminus ( B_1 \cup B_2 )) \cup \ldots \cup (B_{n+1} \setminus (\bigcup\limits_{k=1}^n B_k)) \cup \ldots </tex>
  
 
По доказанному выше утверждению, это объединение можно записать как:
 
По доказанному выше утверждению, это объединение можно записать как:
Строка 45: Строка 43:
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
Пусть <tex> X </tex> - некоторое множество, <tex> \mathcal A </tex> - совокупность его подмножеств. <tex> \mathcal A </tex> - '''алгебра''', если:
+
Пусть <tex> X </tex> некоторое множество, <tex> \mathcal A </tex> —  совокупность его подмножеств. <tex> \mathcal A </tex> '''алгебра''', если:
  
1) <tex> \varnothing \in \mathcal A </tex>
+
# <tex> \varnothing \in \mathcal A </tex>
 +
# <tex> B \in \mathcal A \Rightarrow \overline B = X \setminus B \in \mathcal A </tex>
 +
# <tex> B, C \in \mathcal A \Rightarrow B \cap C \in \mathcal A </tex>
  
2) <tex> B \in \mathcal A \Rightarrow \overline B = X \setminus B \in \mathcal A </tex>
+
<tex> \mathcal A </tex> называется '''σ-алгеброй''' (сигма-алгеброй, счетной алгеброй), если третья аксиома усилена требованием принадлежности <tex> \mathcal A </tex> пересечения счетного числа множеств:
  
3) <tex> B, C \in \mathcal A \Rightarrow B \cap C \in \mathcal A </tex>
+
<tex> B_1, B_2, ... \in \mathcal A \Rightarrow \bigcap\limits_{n} B_n \in \mathcal A </tex>
 
}}
 
}}
  
Из данных аксиом следует, что <tex> X = \overline \varnothing \in \mathcal A </tex> и <tex> B \cup C = \overline {\overline B \cup \overline C} \in \mathcal A </tex>, поэтому алгебра замкнута относительно любых конечных теоретико-множественных операций.
+
Из данных аксиом следует, что <tex> X = \overline \varnothing \in \mathcal A </tex> и <tex> B \cup C = \overline {\overline B \cap \overline C} \in \mathcal A </tex>, поэтому алгебра замкнута относительно любых конечных теоретико-множественных операций.
  
Если усилить третью аксиому, потребовав принадлежности <tex> \mathcal A </tex> пересечения счетного числа множеств, то получим структуру, называемую '''σ-алгеброй'''(сигма-алгебра). Она замкнута относительно теоретико-множественных операций с неболее чем счетным числом объектов.
+
'''σ'''-алгебра замкнута относительно теоретико-множественных операций с не более, чем счетным числом объектов.
  
Очевидно, сигма-алгебры являются частным случаем обычных алгебр, которые, в свою очередь, являются частным случаем полуколец.
+
Cигма-алгебры являются частным случаем обычных алгебр, которые, в свою очередь, являются частным случаем полуколец: <tex> A \subset B, B \setminus A = B \cap \overline A \in \mathcal{A} </tex>
  
[[Математический_анализ_1_курс#.D0.93.D0.BB.D0.B0.D0.B2.D0.B0_V_.D0.A0.D1.8F.D0.B4.D1.8B|на главную <<]] [[Мера на полукольце множеств|>>]]
+
[[Математический_анализ_2_курс|на главную <<]] [[Мера на полукольце множеств|>>]]
  
[[Категория:Математический анализ 1 курс]]
+
[[Категория:Математический анализ 2 курс]]

Текущая версия на 03:45, 3 февраля 2012

на главную << >>

Полукольцо[править]

Определение:
Пусть [math] X [/math] — некоторое множество, [math] \mathcal R [/math] — совокупность его подмножеств (не обязательно всех). Пара [math] (X, \mathcal R) [/math] называется полукольцом, если:
  1. [math] \varnothing \in \mathcal R [/math]
  2. [math] A, B \in \mathcal R \Rightarrow A \cap B \in \mathcal R [/math] (замкнутость относительно пересечения)
  3. [math] A, B \in \mathcal R, A \subset B \Rightarrow \exists D_1, \ldots, D_n, \ldots \in \mathcal R: B \setminus A = \bigcup\limits_n D_n, D_n \in \mathcal R, D_i \cap D_j = \varnothing [/math] для [math] i \ne j [/math] (далее просто будем говорить, что эти множества дизъюнктны).


Простой пример полукольца: [math] X = \mathbb R, \mathcal R = \{\,[a; b) \mid a, b \in \mathbb R, a \le b\,\} [/math]. Элементы этого полукольца называются ячейками.

Докажем теперь пару полезных утверждений для полуколец.

Утверждение:
Пусть [math] B, A_1, A_2, \ldots, A_n \in \mathcal R [/math]. Тогда [math] B \setminus \bigcup\limits_{j = 1}^{n} A_j = \bigcup\limits_{k} D_k, D_k \in \mathcal R, D_k [/math] дизъюнктны.
[math]\triangleright[/math]

Доказательство ведем индукцией по [math] n [/math]. При [math] n = 1 [/math] получаем в точности третью аксиому полукольца.

Пусть теперь утверждение выполнялось для [math] n - 1 [/math] множества. Тогда получаем:

[math] B \setminus \bigcup\limits_{j = 1}^{n} A_j = ( B \setminus \bigcup\limits_{j = 1}^{n-1} A_j\ ) \setminus A_n = (\bigcup\limits_{k} D_k) \setminus A_n = \bigcup\limits_{k}(D_k \setminus A_n) = \bigcup\limits_{k}(\bigcup\limits_{j} D_{k,j}) = \bigcup\limits_{l} D_l [/math]

Очевидно, множества из получившегося объединения дизъюнктны, как и требуется, поэтому утверждение выполняется для любого [math] n [/math].
[math]\triangleleft[/math]
Утверждение:
Пусть [math] B_1, B_2, \ldots, B_n, \ldots \in \mathcal R [/math]. Тогда [math] \bigcup\limits_{n} B_n = \bigcup\limits_{k} D_k, D_k \in \mathcal R, D_k[/math] дизъюнктны.
[math]\triangleright[/math]

[math] \bigcup\limits_{n} B_n = B_1 \cup (B_2 \setminus B_1) \cup (B_3 \setminus ( B_1 \cup B_2 )) \cup \ldots \cup (B_{n+1} \setminus (\bigcup\limits_{k=1}^n B_k)) \cup \ldots [/math]

По доказанному выше утверждению, это объединение можно записать как:

[math] B_1 \cup (\bigcup\limits_{k_2} D_{k_2}) \cup (\bigcup\limits_{k_3} D_{k_3}) \cup \ldots = \bigcup\limits_{l} D_l [/math]
[math]\triangleleft[/math]

Алгебра[править]

Определение:
Пусть [math] X [/math] — некоторое множество, [math] \mathcal A [/math] — совокупность его подмножеств. [math] \mathcal A [/math]алгебра, если:
  1. [math] \varnothing \in \mathcal A [/math]
  2. [math] B \in \mathcal A \Rightarrow \overline B = X \setminus B \in \mathcal A [/math]
  3. [math] B, C \in \mathcal A \Rightarrow B \cap C \in \mathcal A [/math]

[math] \mathcal A [/math] называется σ-алгеброй (сигма-алгеброй, счетной алгеброй), если третья аксиома усилена требованием принадлежности [math] \mathcal A [/math] пересечения счетного числа множеств:

[math] B_1, B_2, ... \in \mathcal A \Rightarrow \bigcap\limits_{n} B_n \in \mathcal A [/math]


Из данных аксиом следует, что [math] X = \overline \varnothing \in \mathcal A [/math] и [math] B \cup C = \overline {\overline B \cap \overline C} \in \mathcal A [/math], поэтому алгебра замкнута относительно любых конечных теоретико-множественных операций.

σ-алгебра замкнута относительно теоретико-множественных операций с не более, чем счетным числом объектов.

Cигма-алгебры являются частным случаем обычных алгебр, которые, в свою очередь, являются частным случаем полуколец: [math] A \subset B, B \setminus A = B \cap \overline A \in \mathcal{A} [/math]

на главную << >>