Представление групп — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Определяющие соотношения)
Строка 2: Строка 2:
  
 
== Свободная группа ==
 
== Свободная группа ==
Рассмотрим конечный алфавит <math> \Sigma = \{ a_1, a_2, \dots a_n \}, \; \Sigma^{-1} = \{ a_1^{-1}, a_2^{-1}, \dots a_n^{-1} \} </math>. <br>
+
Рассмотрим конечный алфавит <tex> \Sigma = \{ a_1, a_2, \dots a_n \}, \; \Sigma^{-1} = \{ a_1^{-1}, a_2^{-1}, \dots a_n^{-1} \} </tex>. <br>
Рассмотрим множество строк над алфавитом <math> \Sigma \cup \Sigma^{-1} ; \; S = S_1 S_2 \dots S_k , \; символ a \in \Sigma \cup \Sigma^{-1} </math>. <br>
+
Рассмотрим множество строк над алфавитом <tex> \Sigma \cup \Sigma^{-1} ; \; S = S_1 S_2 \dots S_k , \; символ a \in \Sigma \cup \Sigma^{-1} </tex>. <br>
  
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
<math>S</math> и <math>S'</math> называются '''эквивалентными''', если они могут быть превращены друг в друга вставками и удалениями из произвольных мест <math>aa^{-1}</math> и <math>a^{-1}a</math>.
+
<tex>S</tex> и <tex>S'</tex> называются '''эквивалентными''', если они могут быть превращены друг в друга вставками и удалениями из произвольных мест <tex>aa^{-1}</tex> и <tex>a^{-1}a</tex>.
 
}}
 
}}
  
Таким образом, <math> \Sigma \cup \Sigma^{-1} </math> с операцией конкатенации будет группой (обратным элементом будет обращение строки с заменой всех символов на «обратные» им).
+
Таким образом, <tex> \Sigma \cup \Sigma^{-1} </tex> с операцией конкатенации будет группой (обратным элементом будет обращение строки с заменой всех символов на «обратные» им).
  
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
<math> \Sigma \cup \Sigma^{-1} </math> называется '''свободной группой, порожденной алфавитом <math>\Sigma</math>'''.
+
<tex> \Sigma \cup \Sigma^{-1} </tex> называется '''свободной группой, порожденной алфавитом <tex>\Sigma</tex>'''.
 
}}
 
}}
  
  
Рассмотрим строку. Проредуцируем её (будем последовательно удалять <math>aa^{-1}</math> из нее, пока в строке не будет таких последовательностей элементов). Поставим вопрос: ''правда ли, что вне зависимости от последовательности удалений мы будем получать одну и ту же конечную редуцированную строку?''
+
Рассмотрим строку. Проредуцируем её (будем последовательно удалять <tex>aa^{-1}</tex> из нее, пока в строке не будет таких последовательностей элементов). Поставим вопрос: ''правда ли, что вне зависимости от последовательности удалений мы будем получать одну и ту же конечную редуцированную строку?''
  
 
{{Теорема
 
{{Теорема
Строка 24: Строка 24:
 
У одной строки существует лишь одна редуцированная строка
 
У одной строки существует лишь одна редуцированная строка
 
|proof=
 
|proof=
Пусть существуют 2 проредуцированные строки <math>\omega_1</math> и <math>\omega_2</math>, заданные одной строкой. Тогда существуют цепочки вставок и удалений <br>
+
Пусть существуют 2 проредуцированные строки <tex>\omega_1</tex> и <tex>\omega_2</tex>, заданные одной строкой. Тогда существуют цепочки вставок и удалений <br>
<math>\omega_1 \rightarrow S_1 \rightarrow S_2 \dots \rightarrow S_k \rightarrow \omega_2 </math>, где <math>\rightarrow</math> − операция вставки или удаления <math>aa^{-1}</math>. (Существование цепочки обеспечено тем, что эти строки образованы одним элементом). <br>
+
<tex>\omega_1 \rightarrow S_1 \rightarrow S_2 \dots \rightarrow S_k \rightarrow \omega_2 </tex>, где <tex>\rightarrow</tex> − операция вставки или удаления <tex>aa^{-1}</tex>. (Существование цепочки обеспечено тем, что эти строки образованы одним элементом). <br>
  
Среди цепочек рассмотрим такую, у которой минимально <math>\sum |S_i|</math> и пусть <math>S_i</math> − строка наибольшей длины. <br>
+
Среди цепочек рассмотрим такую, у которой минимально <tex>\sum |S_i|</tex> и пусть <tex>S_i</tex> − строка наибольшей длины. <br>
Рассмотрим <math> S_{i - 1} \rightarrow S_i \rightarrow S_{i + 1} </math>, причем мы знаем, что переходы от <math>i</math> к <math>i - 1</math> и <math>i + 1</math> обеспечены за счет удаления (из-за того, что длина <math>S_i</math> максимальна). Эти переходы могут быть обеспечены за счет:
+
Рассмотрим <tex> S_{i - 1} \rightarrow S_i \rightarrow S_{i + 1} </tex>, причем мы знаем, что переходы от <tex>i</tex> к <tex>i - 1</tex> и <tex>i + 1</tex> обеспечены за счет удаления (из-за того, что длина <tex>S_i</tex> максимальна). Эти переходы могут быть обеспечены за счет:
# Двух непересекающихся пар. Тогда пусть <math> S_{i - 1} = L_1 L_2 b b^{-1} L_3, \quad S_i = L_1 a a^{-1} L_2 b b^{-1} L_3, \quad S_{i + 1} = L_1 a a^{-1} L_2 L_3 </math>, где <math>L_1, L_2, L_3</math> − некие строки. <br>Таким образом, у нас есть часть цепочки <math>L_1 L_2 b b^{-1} L_3 \rightarrow L_1 a a^{-1} L_2 b b^{-1} L_3 \rightarrow L_1 a a^{-1} L_2 L_3 </math>.  Заменим эту часть цепочки на <math>L_1 L_2 b b^{-1} L_3 \rightarrow L_1 L_2 L_3 \rightarrow L_1 a a^{-1} L_2 L_3 </math>. Заметим, что крайние значения части цепочки от этого не изменятся, но <math>\sum |S_i|</math> уменьшится, а это противоречит нашему предположению о минимальности суммы.
+
# Двух непересекающихся пар. Тогда пусть <tex> S_{i - 1} = L_1 L_2 b b^{-1} L_3, \quad S_i = L_1 a a^{-1} L_2 b b^{-1} L_3, \quad S_{i + 1} = L_1 a a^{-1} L_2 L_3 </tex>, где <tex>L_1, L_2, L_3</tex> − некие строки. <br>Таким образом, у нас есть часть цепочки <tex>L_1 L_2 b b^{-1} L_3 \rightarrow L_1 a a^{-1} L_2 b b^{-1} L_3 \rightarrow L_1 a a^{-1} L_2 L_3 </tex>.  Заменим эту часть цепочки на <tex>L_1 L_2 b b^{-1} L_3 \rightarrow L_1 L_2 L_3 \rightarrow L_1 a a^{-1} L_2 L_3 </tex>. Заметим, что крайние значения части цепочки от этого не изменятся, но <tex>\sum |S_i|</tex> уменьшится, а это противоречит нашему предположению о минимальности суммы.
# Пар, пересекающихся по двум позициям. Тогда <math>S_{i-1} = S_{i+1}</math>, и можно избавиться от <math>S_{i}</math> и <math>S_{i + 1}</math>, и от этого сумма длин слов также уменьшится.
+
# Пар, пересекающихся по двум позициям. Тогда <tex>S_{i-1} = S_{i+1}</tex>, и можно избавиться от <tex>S_{i}</tex> и <tex>S_{i + 1}</tex>, и от этого сумма длин слов также уменьшится.
# Пар, пересекающихся по одной позиции. Имеем <math>L_1 a L_2 \rightarrow L_1 a a^{-1} a L_2 \rightarrow L_1 a L_2</math>, и в этом случае мы также можем избавиться от <math>S_{i}</math> и <math>S_{i + 1}</math>, что также уменьшит итоговую сумму длин строк.
+
# Пар, пересекающихся по одной позиции. Имеем <tex>L_1 a L_2 \rightarrow L_1 a a^{-1} a L_2 \rightarrow L_1 a L_2</tex>, и в этом случае мы также можем избавиться от <tex>S_{i}</tex> и <tex>S_{i + 1}</tex>, что также уменьшит итоговую сумму длин строк.
 
Таким образом, мы пришли к противоречию во всех случаях, а это значит, что мы доказали теорему.
 
Таким образом, мы пришли к противоречию во всех случаях, а это значит, что мы доказали теорему.
 
}}
 
}}
  
 
== Задание группы определяющими соотношениями ==
 
== Задание группы определяющими соотношениями ==
Пусть также имеем алфавит <math>\Sigma = \{ a_1, \dots a_n \} </math> и набор пар строк <math>S_1 \sim \omega_1, \dots, S_n \sim \omega_n</math>. Разрешается где угодно менять <math>\omega_i</math> на <math>S_i</math> и наоборот.  
+
Пусть также имеем алфавит <tex>\Sigma = \{ a_1, \dots a_n \} </tex> и набор пар строк <tex>S_1 \sim \omega_1, \dots, S_n \sim \omega_n</tex>. Разрешается где угодно менять <tex>\omega_i</tex> на <tex>S_i</tex> и наоборот.  
  
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
Выражения <math>S_1 \sim \omega_1, \dots, S_n \sim \omega_n</math> называются '''определяющими соотношениями'''.
+
Выражения <tex>S_1 \sim \omega_1, \dots, S_n \sim \omega_n</tex> называются '''определяющими соотношениями'''.
 
}}
 
}}
  

Версия 22:36, 29 июня 2010

Эта статья находится в разработке!

Свободная группа

Рассмотрим конечный алфавит [math] \Sigma = \{ a_1, a_2, \dots a_n \}, \; \Sigma^{-1} = \{ a_1^{-1}, a_2^{-1}, \dots a_n^{-1} \} [/math].
Рассмотрим множество строк над алфавитом [math] \Sigma \cup \Sigma^{-1} ; \; S = S_1 S_2 \dots S_k , \; символ a \in \Sigma \cup \Sigma^{-1} [/math].


Определение:
[math]S[/math] и [math]S'[/math] называются эквивалентными, если они могут быть превращены друг в друга вставками и удалениями из произвольных мест [math]aa^{-1}[/math] и [math]a^{-1}a[/math].


Таким образом, [math] \Sigma \cup \Sigma^{-1} [/math] с операцией конкатенации будет группой (обратным элементом будет обращение строки с заменой всех символов на «обратные» им).


Определение:
[math] \Sigma \cup \Sigma^{-1} [/math] называется свободной группой, порожденной алфавитом [math]\Sigma[/math].


Рассмотрим строку. Проредуцируем её (будем последовательно удалять [math]aa^{-1}[/math] из нее, пока в строке не будет таких последовательностей элементов). Поставим вопрос: правда ли, что вне зависимости от последовательности удалений мы будем получать одну и ту же конечную редуцированную строку?

Теорема:
У одной строки существует лишь одна редуцированная строка
Доказательство:
[math]\triangleright[/math]

Пусть существуют 2 проредуцированные строки [math]\omega_1[/math] и [math]\omega_2[/math], заданные одной строкой. Тогда существуют цепочки вставок и удалений
[math]\omega_1 \rightarrow S_1 \rightarrow S_2 \dots \rightarrow S_k \rightarrow \omega_2 [/math], где [math]\rightarrow[/math] − операция вставки или удаления [math]aa^{-1}[/math]. (Существование цепочки обеспечено тем, что эти строки образованы одним элементом).

Среди цепочек рассмотрим такую, у которой минимально [math]\sum |S_i|[/math] и пусть [math]S_i[/math] − строка наибольшей длины.
Рассмотрим [math] S_{i - 1} \rightarrow S_i \rightarrow S_{i + 1} [/math], причем мы знаем, что переходы от [math]i[/math] к [math]i - 1[/math] и [math]i + 1[/math] обеспечены за счет удаления (из-за того, что длина [math]S_i[/math] максимальна). Эти переходы могут быть обеспечены за счет:

  1. Двух непересекающихся пар. Тогда пусть [math] S_{i - 1} = L_1 L_2 b b^{-1} L_3, \quad S_i = L_1 a a^{-1} L_2 b b^{-1} L_3, \quad S_{i + 1} = L_1 a a^{-1} L_2 L_3 [/math], где [math]L_1, L_2, L_3[/math] − некие строки.
    Таким образом, у нас есть часть цепочки [math]L_1 L_2 b b^{-1} L_3 \rightarrow L_1 a a^{-1} L_2 b b^{-1} L_3 \rightarrow L_1 a a^{-1} L_2 L_3 [/math]. Заменим эту часть цепочки на [math]L_1 L_2 b b^{-1} L_3 \rightarrow L_1 L_2 L_3 \rightarrow L_1 a a^{-1} L_2 L_3 [/math]. Заметим, что крайние значения части цепочки от этого не изменятся, но [math]\sum |S_i|[/math] уменьшится, а это противоречит нашему предположению о минимальности суммы.
  2. Пар, пересекающихся по двум позициям. Тогда [math]S_{i-1} = S_{i+1}[/math], и можно избавиться от [math]S_{i}[/math] и [math]S_{i + 1}[/math], и от этого сумма длин слов также уменьшится.
  3. Пар, пересекающихся по одной позиции. Имеем [math]L_1 a L_2 \rightarrow L_1 a a^{-1} a L_2 \rightarrow L_1 a L_2[/math], и в этом случае мы также можем избавиться от [math]S_{i}[/math] и [math]S_{i + 1}[/math], что также уменьшит итоговую сумму длин строк.
Таким образом, мы пришли к противоречию во всех случаях, а это значит, что мы доказали теорему.
[math]\triangleleft[/math]

Задание группы определяющими соотношениями

Пусть также имеем алфавит [math]\Sigma = \{ a_1, \dots a_n \} [/math] и набор пар строк [math]S_1 \sim \omega_1, \dots, S_n \sim \omega_n[/math]. Разрешается где угодно менять [math]\omega_i[/math] на [math]S_i[/math] и наоборот.


Определение:
Выражения [math]S_1 \sim \omega_1, \dots, S_n \sim \omega_n[/math] называются определяющими соотношениями.


Утверждение (без доказательства):
Задача проверки эквивалентности строк при заданных определяющих соотношениях алгоритмически неразрешима.