Примеры неразрешимых задач: проблема соответствий Поста — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 2: Строка 2:
 
|definition=
 
|definition=
 
Дана упорядоченная пара конечных последовательностей <tex>(( a_1 , \ldots , a_n ) , ( b_1 , \ldots , b_n ))</tex>, где <tex>a_i \in \Sigma ^*</tex> и <tex>b_i \in \Sigma ^*</tex> для всех <tex>i</tex>. Вопрос существования непустой последовательности индексов <tex>( i_1 , \ldots , i_k )</tex>, удовлетворяющей условию <tex>a_{i_1} \ldots a_{i_k} = b_{i_1} \ldots b_{i_k}</tex>, где <tex> 1 \leq i_j \leq n</tex> для каждого j, называется '''проблемой соответствий Поста (ПСП)'''.
 
Дана упорядоченная пара конечных последовательностей <tex>(( a_1 , \ldots , a_n ) , ( b_1 , \ldots , b_n ))</tex>, где <tex>a_i \in \Sigma ^*</tex> и <tex>b_i \in \Sigma ^*</tex> для всех <tex>i</tex>. Вопрос существования непустой последовательности индексов <tex>( i_1 , \ldots , i_k )</tex>, удовлетворяющей условию <tex>a_{i_1} \ldots a_{i_k} = b_{i_1} \ldots b_{i_k}</tex>, где <tex> 1 \leq i_j \leq n</tex> для каждого j, называется '''проблемой соответствий Поста (ПСП)'''.
}}
 
 
{{Теорема
 
|statement=
 
Проблема соответствий Поста неразрешима.
 
}}
 
 
{{Определение
 
|definition=
 
'''Модифицированной проблемой соответствий Поста (МПСП)''' называется вопрос существования последовательности индексов <tex>( 1 , i_1, \ldots , i_k )</tex>, удовлетворяющих условию <tex>a_1 a_{i_1} \ldots a_{i_k} = b_1 b_{i_1} \ldots b_{i_k}, </tex> при <tex> 1 \leq i_j \leq n</tex> <tex>\forall j</tex> для упорядоченной пары конечных последовательностей <tex>(( a_1 , \ldots , a_n ) , ( b_1 , \ldots , b_n ))</tex>, где <tex>a_i \in \Sigma ^*</tex> и <tex>b_i \in \Sigma ^*</tex> <tex>\forall i</tex>.
 
 
}}
 
}}
  
Строка 23: Строка 13:
 
Докажем неразрешимость:
 
Докажем неразрешимость:
  
Сначала приведём доказательства для случая, когда <tex>i_1 = 1</tex>, т.е. для '''МПСП'''. Считаем, что '''Машина Тьюринга''' (<tex>MT</tex>) никогда не приходит в <tex>N</tex> - недопуск. <tex>MT: (m, \omega)</tex>. Задача <tex>m(\omega) = Y</tex> не разрешима. Предположим, что мы умеем решать '''МПСП'''.
+
Сначала приведём доказательства для случая, когда <tex>i_1 = 1</tex>, т.е. для '''МПСП'''.
 +
 
 +
{{Определение
 +
|definition=
 +
'''Модифицированной проблемой соответствий Поста (МПСП)''' называется вопрос существования последовательности индексов <tex>( 1 , i_1, \ldots , i_k )</tex>, удовлетворяющих условию <tex>a_1 a_{i_1} \ldots a_{i_k} = b_1 b_{i_1} \ldots b_{i_k}, </tex> при <tex> 1 \leq i_j \leq n</tex> <tex>\forall j</tex> для упорядоченной пары конечных последовательностей <tex>(( a_1 , \ldots , a_n ) , ( b_1 , \ldots , b_n ))</tex>, где <tex>a_i \in \Sigma ^*</tex> и <tex>b_i \in \Sigma ^*</tex> <tex>\forall i</tex>.
 +
}}
 +
Считаем, что '''Машина Тьюринга''' (<tex>MT</tex>) никогда не приходит в <tex>N</tex> - недопуск. <tex>MT: (m, \omega)</tex>. Задача <tex>m(\omega) = Y</tex> не разрешима. Предположим, что мы умеем решать '''МПСП'''.
  
 
<tex>a_1 = \$ \#_s \omega \$</tex>, <tex>b_1 = \$</tex>.
 
<tex>a_1 = \$ \#_s \omega \$</tex>, <tex>b_1 = \$</tex>.

Версия 23:45, 15 января 2011

Определение:
Дана упорядоченная пара конечных последовательностей [math](( a_1 , \ldots , a_n ) , ( b_1 , \ldots , b_n ))[/math], где [math]a_i \in \Sigma ^*[/math] и [math]b_i \in \Sigma ^*[/math] для всех [math]i[/math]. Вопрос существования непустой последовательности индексов [math]( i_1 , \ldots , i_k )[/math], удовлетворяющей условию [math]a_{i_1} \ldots a_{i_k} = b_{i_1} \ldots b_{i_k}[/math], где [math] 1 \leq i_j \leq n[/math] для каждого j, называется проблемой соответствий Поста (ПСП).


Теорема:
Язык имеющих решение проблем соответствий поста перечислим, но не разрешим.
Доказательство:
[math]\triangleright[/math]

Полуразрешимость: возможно взять по возрастанию все возможные наборы индексов, применить конкатенацию и сравнить полученные строки. При совпадении задача будет решена, иначе - программа зависнет.

Докажем неразрешимость:

Сначала приведём доказательства для случая, когда [math]i_1 = 1[/math], т.е. для МПСП.


Определение:
Модифицированной проблемой соответствий Поста (МПСП) называется вопрос существования последовательности индексов [math]( 1 , i_1, \ldots , i_k )[/math], удовлетворяющих условию [math]a_1 a_{i_1} \ldots a_{i_k} = b_1 b_{i_1} \ldots b_{i_k}, [/math] при [math] 1 \leq i_j \leq n[/math] [math]\forall j[/math] для упорядоченной пары конечных последовательностей [math](( a_1 , \ldots , a_n ) , ( b_1 , \ldots , b_n ))[/math], где [math]a_i \in \Sigma ^*[/math] и [math]b_i \in \Sigma ^*[/math] [math]\forall i[/math].

Считаем, что Машина Тьюринга ([math]MT[/math]) никогда не приходит в [math]N[/math] - недопуск. [math]MT: (m, \omega)[/math]. Задача [math]m(\omega) = Y[/math] не разрешима. Предположим, что мы умеем решать МПСП.

[math]a_1 = \$ \#_s \omega \$[/math], [math]b_1 = \$[/math]. Таким образом выводятся следующие последовательности: [math]\$ A_0 \$ \ldots \$ A_k \$[/math] и [math]\$ A_i \ldots[/math] - мгновенное описание.

Если [math]MT[/math] остановится, нужно добиться того, чтобы строка закончилась. Иначе строки будут расти до бесконечности, но никогда не закончатся.

[math]\forall c \in \Pi[/math] построим следующую пару [math](a_i=c, b_i = c), (a_i = \$, b = \$)[/math]. [math]b[/math] должно сойтись с соответствующей [math]a[/math] в предыдущем мгновенном описании.

Соответственно [math]a_i = d \#_p[/math], [math]b_i = \#_q c[/math] и [math]\delta(q, c) = \langle p, d, \rightarrow \rangle[/math], а также [math]a_i = \#_p a d[/math], [math]b_i a \#_q e[/math] и [math]\delta (a, c) = \langle p, d, \leftarrow \rangle [/math]. Аналогично следует поступить и с переходом на месте, или считаем, что такого не бывает.

Как может быть устроен префикс решения МПСП:

[math]a[/math]: [math]| \$ | \#_s \omega_1 \$ | d \#_p | w_2 \ldots | \$ | \#_y \$ | \$ |[/math]

[math]b[/math]: [math]| \$ | \omega_1 | \omega_2 \ldots | \$ | \#_y \$ \$ |[/math]

Требуется добиться остановки. Для этого добавляется далее:

  • [math]a = \#_y[/math], [math]b = \#_y c[/math]
  • или [math]a = \#_y[/math], [math]b = c \#_y[/math]
  • или [math]a = \$[/math], [math]b = \#_y \$ \$[/math]

Теперь остаётся избавиться от требования фиксированного первого индекса, т.е. перейти от МПСП к ПСП:

Известно:

  • Существует решение МПСП [math]\Rightarrow[/math] существует решение ПСП
  • Не существует решения МПСП [math]\Leftarrow[/math]не существует решения ПСП

Необходимо:

  • Не существует решения МПСП [math]\Rightarrow[/math] не существует решения ПСП

Возьмём экземпляр задачи МПСП: [math](( a_1 , \ldots , a_n ) , ( b_1 , \ldots , b_n ))[/math]. Вставим между каждой парой символов во всех строках символ [math]*[/math].

[math]i = 1[/math]

  • [math]a_1 = * c_1 * c_2 \ldots c_l *[/math]
  • [math]b_1 = * c_1 * c_2 \ldots c_l[/math]

[math]i = 2 \ldots n [/math]:

  • [math]a_i = c_1 c_2 \ldots c_l \rightarrow a_i = c_1 * c_2 * \ldots * c_l *[/math]
  • [math]b_i = c_1 c_2 \ldots c_l \rightarrow b_i = c_1 * c_2 * \ldots * c_l[/math]

[math]i = n + 1[/math]

  • [math]a_{n+1} = \$[/math]
  • [math]b_{n+1} = *\$[/math]

Теперь необходимо начать с [math](a_1, b_1)[/math], т.к. все остальные пары начинаются с различных символов.

Возникающее однозначное соответствие может быть решением этой системы и решением исходной задачи, в которой всё начиналось с пары [math](a_1, b_1)[/math].
[math]\triangleleft[/math]

Литература

  • Джон Хопкрофт, Раджив Мотвани, Джеффри Ульман. Введение в теорию автоматов, языков и вычислений.