Произведение Адамара рациональных производящих функций — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Произведение Адамара, Начало)
 
(Произведение Адамара, Начало)
Строка 4: Строка 4:
 
}}
 
}}
 
Таким образом, произведение Адамара двух последовательностей {{---}} это последовательность, состоящая из почленных произведений соответственных членов этих последовательностей. Необходимость в производящей функции для произведения Адамара уже встречалась: в задаче о числе счастливых билетов нам понадобилось вычислить сумму квадратов коэффициентов производящего многочлена <tex>A_3</tex>. Эта необходимость возникает при перечислении пар объектов одинакового порядка: если число объектов первого типа равно <tex>a_n</tex>, а число объектов второго типа <tex>b_n</tex> то число пар объектов, составленных из элементов первого и второго типа, равно <tex>a_n b_n</tex>.
 
Таким образом, произведение Адамара двух последовательностей {{---}} это последовательность, состоящая из почленных произведений соответственных членов этих последовательностей. Необходимость в производящей функции для произведения Адамара уже встречалась: в задаче о числе счастливых билетов нам понадобилось вычислить сумму квадратов коэффициентов производящего многочлена <tex>A_3</tex>. Эта необходимость возникает при перечислении пар объектов одинакового порядка: если число объектов первого типа равно <tex>a_n</tex>, а число объектов второго типа <tex>b_n</tex> то число пар объектов, составленных из элементов первого и второго типа, равно <tex>a_n b_n</tex>.
 +
==Теорема==
 +
{{Теорема
 +
|statement= Произведение Адамара двух рациональных производящих функций рационально.}}
 +
Для доказательства этой теоремы нам понадобится новая характеризация рациональных производящих функций.
 +
{{Лемма
 +
|statement= Производящая функция для последовательности <tex>a_0, a_1,
 +
a_2, \dots</tex> рациональна тогда и только тогда, когда существуют такие числа <tex>q_1, \dots, q_l</tex> и такие многочлены <tex>p_1(n),
 +
\dots, p_l(n)</tex>, что начиная с некоторого номера <tex>n</tex>
 +
<tex>a_n = p_1(n) q_1^n + \dots + p_l(n) q_l^n.</tex>
 +
Выражение в правой части равенства называется квазимногочленом от переменной <tex>n</tex>.}}
 +
===Доказательство===
 +
Заметим прежде всего, что производящая функция <tex>(1 - q s)^{-k}</tex> имеет вид
 +
<tex>(1 - q s)^{-k} = 1 - {-k \choose 1} q s + {-k \choose 2} q^{2} s^{2} -
 +
{-k\choose 3} q^{3} s^{3} + \dots =
 +
= 1+ {k \choose 1} q s + {k + 1 \choose 2} q^{2} s^{2} + {k + 2 \choose 3}
 +
q^{3} s^{3} + \dots =
 +
= 1 + {k \choose k - 1} q s + {k + 1 \choose k - 1} q^{2} s^{2} + {k + 2 \choose k - 1} q^{3} s^{3} + \dots</tex>
 +
Коэффициент при <tex>s^n</tex> в этой производящей функции равен

Версия 17:40, 10 июня 2017

Одно из наиболее привлекательных свойств рациональных производящих функций — их замкнутость относительно произведения Адамара.

Определение:
Произведением Адамара (англ. Hadamard product) производящих функций [math]A(s) = a_0 + a_1 s + a_2 s^2 + \dots[/math] и [math]B(s) = b_0 + b_1 s + b_2 s^2 + \dots[/math] называется производящая функция [math]A(s) \circ B(s) = (a_0 b_0) + (a_1 b_1) s + (a_2 b_2) s^2 + \dots[/math].

Таким образом, произведение Адамара двух последовательностей — это последовательность, состоящая из почленных произведений соответственных членов этих последовательностей. Необходимость в производящей функции для произведения Адамара уже встречалась: в задаче о числе счастливых билетов нам понадобилось вычислить сумму квадратов коэффициентов производящего многочлена [math]A_3[/math]. Эта необходимость возникает при перечислении пар объектов одинакового порядка: если число объектов первого типа равно [math]a_n[/math], а число объектов второго типа [math]b_n[/math] то число пар объектов, составленных из элементов первого и второго типа, равно [math]a_n b_n[/math].

Теорема

Теорема:
Произведение Адамара двух рациональных производящих функций рационально.

Для доказательства этой теоремы нам понадобится новая характеризация рациональных производящих функций.

Лемма:
Производящая функция для последовательности [math]a_0, a_1, a_2, \dots[/math] рациональна тогда и только тогда, когда существуют такие числа [math]q_1, \dots, q_l[/math] и такие многочлены [math]p_1(n), \dots, p_l(n)[/math], что начиная с некоторого номера [math]n[/math]

[math]a_n = p_1(n) q_1^n + \dots + p_l(n) q_l^n.[/math]

Выражение в правой части равенства называется квазимногочленом от переменной [math]n[/math].

Доказательство

Заметим прежде всего, что производящая функция [math](1 - q s)^{-k}[/math] имеет вид [math](1 - q s)^{-k} = 1 - {-k \choose 1} q s + {-k \choose 2} q^{2} s^{2} - {-k\choose 3} q^{3} s^{3} + \dots = = 1+ {k \choose 1} q s + {k + 1 \choose 2} q^{2} s^{2} + {k + 2 \choose 3} q^{3} s^{3} + \dots = = 1 + {k \choose k - 1} q s + {k + 1 \choose k - 1} q^{2} s^{2} + {k + 2 \choose k - 1} q^{3} s^{3} + \dots[/math] Коэффициент при [math]s^n[/math] в этой производящей функции равен