Простые числа — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Свойства простых чисел)
(Удалил ссылку на "лучший фанфик")
(Метки: правка с мобильного устройства, правка из мобильной версии)
 
(не показаны 33 промежуточные версии 3 участников)
Строка 1: Строка 1:
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
[[Классы_чисел#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D0.BD.D0.B0.D1.82.D1.83.D1.80.D0.B0.D0.BB.D1.8C.D0.BD.D1.8B.D1.85_.D1.87.D0.B8.D1.81.D0.B5.D0.BB|Натуральное]] число <tex>p</tex> называется '''простым''', если <tex>p>1</tex> и <tex>p</tex> не имеет натуральных [[Классы_чисел#.D0.94.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5|делителей]] отличных от <tex>1</tex> и <tex>p</tex>
+
[[Классы_чисел#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D0.BD.D0.B0.D1.82.D1.83.D1.80.D0.B0.D0.BB.D1.8C.D0.BD.D1.8B.D1.85_.D1.87.D0.B8.D1.81.D0.B5.D0.BB|Натуральное]] число <tex>p</tex> называется '''простым''' (англ. ''prime number''), если <tex>p>1</tex> и <tex>p</tex> не имеет натуральных [[Классы_чисел#.D0.94.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5|делителей]], отличных от <tex>1</tex> и <tex>p</tex>.
 
}}
 
}}
  
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
[[Классы_чисел#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D0.BD.D0.B0.D1.82.D1.83.D1.80.D0.B0.D0.BB.D1.8C.D0.BD.D1.8B.D1.85_.D1.87.D0.B8.D1.81.D0.B5.D0.BB|Натуральное]] число <tex>n>1</tex> называется '''составным''', если <tex>n</tex> имеет по крайней мере один натуральный [[Классы_чисел#.D0.94.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5|делитель]] отличный от <tex>1</tex> и <tex>n</tex>.  
+
[[Классы_чисел#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D0.BD.D0.B0.D1.82.D1.83.D1.80.D0.B0.D0.BB.D1.8C.D0.BD.D1.8B.D1.85_.D1.87.D0.B8.D1.81.D0.B5.D0.BB|Натуральное]] число <tex>n>1</tex> называется '''составным''' (англ. ''composite number''), если <tex>n</tex> имеет по крайней мере один натуральный [[Классы_чисел#.D0.94.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5|делитель]], отличный от <tex>1</tex> и <tex>n</tex>.  
 
}}
 
}}
  
Строка 12: Строка 12:
 
# Простые числа.
 
# Простые числа.
 
# Составные числа.
 
# Составные числа.
# Число <tex>1</tex>, которые не причисляется ни к простым, ни к составным числам.
+
# Число <tex>1</tex>, которое не причисляется ни к простым, ни к составным числам.
  
  
Строка 18: Строка 18:
  
 
{{Утверждение
 
{{Утверждение
|about=1
+
|about=свойство 1
|statement=<tex>p_1</tex>, <tex>p_2</tex> {{---}} различные простые числа, то <tex>p_1</tex> '''не [[Натуральные_и_целые_числа#.D0.94.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D1.87.D0.B8.D1.81.D0.B5.D0.BB_.D1.81_.D0.BE.D1.81.D1.82.D0.B0.D1.82.D0.BA.D0.BE.D0.BC|делится без остатка]]''' на <tex>p_2</tex>.
+
|statement=Если <tex>p_1</tex>, <tex>p_2</tex> {{---}} различные простые числа, то <tex>p_2</tex> '''не [[Натуральные числа#Деление чисел с остатком | делится без остатка]]''' на <tex>p_1</tex>.
 
|proof=
 
|proof=
Положительными делителями простого числа <tex>p_2</tex> являются только <tex>1</tex> и <tex>p_2</tex>. Простое число <tex>p_1 \neq 1</tex> и <tex>p_1 \neq p_2</tex>. Значит <tex>p_1</tex> не делится на <tex>p_2</tex>.
+
Натуральными делителями простого числа <tex>p_2</tex> являются только <tex>1</tex> и <tex>p_2</tex>. Простое число <tex>p_1 \neq 1</tex>, и <tex>p_1 \neq p_2</tex>. Значит, <tex>p_2</tex> не делится на <tex>p_1</tex>.
 
}}
 
}}
  
 
{{Утверждение
 
{{Утверждение
|about=2
+
|about=свойство 2
|statement=Для любого [[Классы_чисел#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D0.BD.D0.B0.D1.82.D1.83.D1.80.D0.B0.D0.BB.D1.8C.D0.BD.D1.8B.D1.85_.D1.87.D0.B8.D1.81.D0.B5.D0.BB|натурального]] числа <tex>n>1</tex>, наименьший, отличный от <tex>1</tex> натуральный делитель всегда является '''простым числом'''.
+
|statement=Для любого [[Классы_чисел#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D0.BD.D0.B0.D1.82.D1.83.D1.80.D0.B0.D0.BB.D1.8C.D0.BD.D1.8B.D1.85_.D1.87.D0.B8.D1.81.D0.B5.D0.BB|натурального]] числа <tex>n>1</tex>, наименьший отличный от <tex>1</tex> натуральный делитель всегда является '''простым числом'''.
 
|proof=
 
|proof=
Рассмотрим множество <tex>M</tex>, состоящее из натуральных, отличные от <tex>1</tex> делители числа <tex>n</tex>. Множество <tex>M</tex> не пусто, так как <tex>n \in M</tex>. Значит в множестве <tex>M</tex> существует наименьшее число <tex>q>1</tex>.  
+
Рассмотрим множество <tex>M</tex>, состоящее из натуральных, отличных от <tex>1</tex>, делителей числа <tex>n</tex>. Множество <tex>M</tex> не пустое, так как <tex>n \in M</tex>. Значит, в множестве <tex>M</tex> существует наименьшее число <tex>q>1</tex>.  
  
Пусть <tex>q</tex> не простое, тогда существует <tex>a</tex> такое, что <tex>1<a<q</tex> и <tex>q</tex> делится на <tex>a</tex>. Так как <tex>n</tex> делится на <tex>q</tex>, то <tex> n</tex> делится на <tex>a</tex>. Значит <tex>q</tex> не наименьшее число в множестве <tex>M</tex>. Получили противоречие. Значит <tex>q</tex> простое число.  
+
Пусть <tex>q</tex> не простое, тогда существует <tex>a</tex> такое, что <tex>1<a<q</tex> и <tex>q</tex> делится на <tex>a</tex>. Так как <tex>n</tex> делится на <tex>q</tex>, то <tex> n</tex> делится на <tex>a</tex>. (Так как <tex>n</tex> делится на <tex>q</tex>, то существует такое натуральное число <tex>k</tex>, что <tex>n = k \times q</tex>. Так как <tex>q</tex> делится на <tex>a</tex>, то существует такое натуральное число <tex>f</tex>, что <tex>q = f \times a</tex>. Следовательно, существуют такие натуральные числа <tex>f</tex>, <tex>k</tex>, что <tex>q = k \times f \times a</tex>, т.е. <tex> n</tex> делится на <tex>a</tex>.) Значит, <tex>q</tex> не наименьшее в множестве <tex>M</tex>. Получили противоречие. Значит, <tex>q</tex> простое число.  
 
}}
 
}}
  
По утверждению <tex>2</tex> мы получаем алгоритм для поиска простых чисел "[[Решето Эратосфена]]".
+
Из свойства 2 мы получаем алгоритм для поиска простых чисел "[[Решето Эратосфена]]".
  
 
==Множество простых чисел==
 
==Множество простых чисел==
Строка 39: Строка 39:
 
|statement=Множество простых чисел '''бесконечно'''.
 
|statement=Множество простых чисел '''бесконечно'''.
 
|proof=
 
|proof=
Пусть множество простых чисел конечно и состоит из чисел <tex>2,3,5, \dots p</tex>, где <tex>p</tex> {{---}} последнее, самое большое простое число.  
+
Пусть множество простых чисел конечно и состоит из чисел <tex>2, 3, 5, \ldots , p</tex>, где <tex>p</tex> {{---}} последнее, самое большое простое число.  
  
Рассмотрим число <tex>N=2*3*5* \dots *p +1</tex>. Число <tex>N</tex> не делится на числа <tex>2, 3, \dots , p</tex>, так как при делении <tex>N</tex> на эти числа получится остаток <tex>1</tex>.  
+
Рассмотрим число <tex>N=2 \times 3 \times 5 \times \ldots \times p +1</tex>.
 +
Число <tex>N</tex> представимо в виде <tex>N=2 \times (3 \times 5 \times \ldots \times p) +1,</tex> где <tex>2\,</tex> — делитель, <tex>(3 \times 5 \times \ldots \times p)\,</tex> — частное, <tex>1\,</tex> — остаток, причем <tex>0\leqslant 1 < 2.</tex> Таким образом, при делении <tex>N</tex> на <tex>2</tex> получится остаток <tex>1</tex>, число <tex>N</tex> на простое число <tex>1</tex> не делится.
 +
Аналогично <tex>N</tex> не делится ни на одно из простых чисел (<tex>3, 5, \ldots , p),</tex> так как при делении <tex>N</tex> на эти числа получится остаток <tex>1</tex>.  
  
Значит число <tex>N=1</tex> (по утв. <tex>2</tex>). C другой стороны <tex>N>1</tex>. Значит предположение, что множество простых чисел конечно неверно.  
+
Значит, число <tex>N=1</tex> (по свойству 2), так как у числа <tex>N</tex> нет простых делителей по предположению.
 +
C другой стороны, <tex>N>1</tex>. Значит, предположение о том, что множество простых чисел конечно, неверно.  
 
}}
 
}}
  
 
Последовательность простых чисел начинается так:
 
Последовательность простых чисел начинается так:
: <tex>2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, \dots </tex>
+
: <tex>2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, \ldots </tex>
 +
 
 +
==Теорема о существовании бесконечного числа простых чисел==
 +
 
 +
{{Теорема
 +
|id=th1
 +
|statement=
 +
Простых чисел бесконечно много.
 +
|proof=
 +
Представим, что количество простых чисел конечно. Перемножим их и прибавим единицу. Полученное число не делится ни на одно из конечного набора простых чисел, потому что остаток от деления на любое из них даёт единицу. Значит, число должно делиться на некоторое простое число, не включённое в этот набор.
 +
}}
 +
 
 +
==Теорема о расходимости ряда <tex>\sum_{}\frac{1}{n}</tex>==
 +
 
 +
{{Теорема
 +
|id=th2
 +
|statement=
 +
Ряд <tex>\sum_{}\dfrac{1}{n}</tex> расходится.
 +
|proof=
 +
<tex>\sum_{n=1}^\infty\dfrac{1}{n} = \prod_{p} {(1 + \dfrac{1}{p} + \dfrac{1}{p^2} + \cdots)}</tex>, где <tex>p</tex> — простое. Таким образом, получаем все числа по одному разу после раскрытия скобок.
 +
}}
 +
Заметим для некоторого <tex>k</tex>: <tex>\sum_{p \leqslant  k}^{}{(1 + \dfrac{1}{p} + \dfrac{1}{p^2} + \cdots)} \ge \sum_{n \leqslant  k} \dfrac{1}{n}</tex>.
 +
Теперь, пользуясь выражением <tex> \ln(1+x) \approx x + o(x) </tex> и логарифмируя, выводим:
 +
<tex> \sum_{p} {\ln(1 + \dfrac{1}{p} + \dfrac{1}{p^2} + \cdots)} \approx \sum_{p} { (\dfrac{1}{p} + \dfrac{1}{p^2} + \cdots)} \leqslant  \dfrac{c}{p^2} </tex> — расходится.
 +
 
 +
==Теорема о расходимости ряда <tex>\sum_{}^{}\frac{1}{p}</tex>==
 +
 
 +
{{Теорема
 +
|id=th3
 +
|statement=
 +
Ряд <tex>\sum_{}^{}\dfrac{1}{p}</tex>, где <tex>p</tex> — простое, расходится.
 +
|proof=
 +
Работая в условиях [[#th2|предыдущей теоремы]], продолжаем:
 +
<tex> \ln(1+x) \leqslant  x</tex>, тогда <tex> \sum_{}^{} {\ln(1 + \dfrac{1}{p} + \cdots)} \leqslant  \sum_{}^{} {( \dfrac{1}{p} + \dfrac{1}{p^2} + \cdots)}</tex>.
 +
Финально: <tex> \sum_{}^{} \dfrac{1}{p} \geqslant  \sum_{}^{} {[\ln(1 + \dfrac{1}{p} + \dfrac{1}{p^2} + \cdots) - \dfrac{c}{p^2}]} </tex> — расходится.
 +
}}
  
 
==См. также==
 
==См. также==
* [[Натуральные и целые числа]]
+
* [[Натуральные числа]]
 
* [[Основная теорема арифметики]]
 
* [[Основная теорема арифметики]]
 
* [[Теоремы о простых числах]]
 
* [[Теоремы о простых числах]]
Строка 59: Строка 97:
 
* И. М. Виноградов. "Основы теории чисел" {{---}} c. 18 - 20.
 
* И. М. Виноградов. "Основы теории чисел" {{---}} c. 18 - 20.
  
[[Категория: Алгоритмы алгебры и теории чисел]]
+
[[Категория: Теория чисел]]
 
[[Категория: Классы чисел]]
 
[[Категория: Классы чисел]]

Текущая версия на 04:42, 13 мая 2021

Определение:
Натуральное число [math]p[/math] называется простым (англ. prime number), если [math]p\gt 1[/math] и [math]p[/math] не имеет натуральных делителей, отличных от [math]1[/math] и [math]p[/math].


Определение:
Натуральное число [math]n\gt 1[/math] называется составным (англ. composite number), если [math]n[/math] имеет по крайней мере один натуральный делитель, отличный от [math]1[/math] и [math]n[/math].


Согласно определениям, множество натуральных чисел разбивается на [math]3[/math] подмножества:

  1. Простые числа.
  2. Составные числа.
  3. Число [math]1[/math], которое не причисляется ни к простым, ни к составным числам.


Свойства простых чисел[править]

Утверждение (свойство 1):
Если [math]p_1[/math], [math]p_2[/math] — различные простые числа, то [math]p_2[/math] не делится без остатка на [math]p_1[/math].
[math]\triangleright[/math]
Натуральными делителями простого числа [math]p_2[/math] являются только [math]1[/math] и [math]p_2[/math]. Простое число [math]p_1 \neq 1[/math], и [math]p_1 \neq p_2[/math]. Значит, [math]p_2[/math] не делится на [math]p_1[/math].
[math]\triangleleft[/math]
Утверждение (свойство 2):
Для любого натурального числа [math]n\gt 1[/math], наименьший отличный от [math]1[/math] натуральный делитель всегда является простым числом.
[math]\triangleright[/math]

Рассмотрим множество [math]M[/math], состоящее из натуральных, отличных от [math]1[/math], делителей числа [math]n[/math]. Множество [math]M[/math] не пустое, так как [math]n \in M[/math]. Значит, в множестве [math]M[/math] существует наименьшее число [math]q\gt 1[/math].

Пусть [math]q[/math] не простое, тогда существует [math]a[/math] такое, что [math]1\lt a\lt q[/math] и [math]q[/math] делится на [math]a[/math]. Так как [math]n[/math] делится на [math]q[/math], то [math] n[/math] делится на [math]a[/math]. (Так как [math]n[/math] делится на [math]q[/math], то существует такое натуральное число [math]k[/math], что [math]n = k \times q[/math]. Так как [math]q[/math] делится на [math]a[/math], то существует такое натуральное число [math]f[/math], что [math]q = f \times a[/math]. Следовательно, существуют такие натуральные числа [math]f[/math], [math]k[/math], что [math]q = k \times f \times a[/math], т.е. [math] n[/math] делится на [math]a[/math].) Значит, [math]q[/math] не наименьшее в множестве [math]M[/math]. Получили противоречие. Значит, [math]q[/math] — простое число.
[math]\triangleleft[/math]

Из свойства 2 мы получаем алгоритм для поиска простых чисел "Решето Эратосфена".

Множество простых чисел[править]

Утверждение:
Множество простых чисел бесконечно.
[math]\triangleright[/math]

Пусть множество простых чисел конечно и состоит из чисел [math]2, 3, 5, \ldots , p[/math], где [math]p[/math] — последнее, самое большое простое число.

Рассмотрим число [math]N=2 \times 3 \times 5 \times \ldots \times p +1[/math]. Число [math]N[/math] представимо в виде [math]N=2 \times (3 \times 5 \times \ldots \times p) +1,[/math] где [math]2\,[/math] — делитель, [math](3 \times 5 \times \ldots \times p)\,[/math] — частное, [math]1\,[/math] — остаток, причем [math]0\leqslant 1 \lt 2.[/math] Таким образом, при делении [math]N[/math] на [math]2[/math] получится остаток [math]1[/math], число [math]N[/math] на простое число [math]1[/math] не делится. Аналогично [math]N[/math] не делится ни на одно из простых чисел ([math]3, 5, \ldots , p),[/math] так как при делении [math]N[/math] на эти числа получится остаток [math]1[/math].

Значит, число [math]N=1[/math] (по свойству 2), так как у числа [math]N[/math] нет простых делителей по предположению.

C другой стороны, [math]N\gt 1[/math]. Значит, предположение о том, что множество простых чисел конечно, неверно.
[math]\triangleleft[/math]

Последовательность простых чисел начинается так:

[math]2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, \ldots [/math]

Теорема о существовании бесконечного числа простых чисел[править]

Теорема:
Простых чисел бесконечно много.
Доказательство:
[math]\triangleright[/math]
Представим, что количество простых чисел конечно. Перемножим их и прибавим единицу. Полученное число не делится ни на одно из конечного набора простых чисел, потому что остаток от деления на любое из них даёт единицу. Значит, число должно делиться на некоторое простое число, не включённое в этот набор.
[math]\triangleleft[/math]

Теорема о расходимости ряда [math]\sum_{}\frac{1}{n}[/math][править]

Теорема:
Ряд [math]\sum_{}\dfrac{1}{n}[/math] расходится.
Доказательство:
[math]\triangleright[/math]
[math]\sum_{n=1}^\infty\dfrac{1}{n} = \prod_{p} {(1 + \dfrac{1}{p} + \dfrac{1}{p^2} + \cdots)}[/math], где [math]p[/math] — простое. Таким образом, получаем все числа по одному разу после раскрытия скобок.
[math]\triangleleft[/math]

Заметим для некоторого [math]k[/math]: [math]\sum_{p \leqslant k}^{}{(1 + \dfrac{1}{p} + \dfrac{1}{p^2} + \cdots)} \ge \sum_{n \leqslant k} \dfrac{1}{n}[/math]. Теперь, пользуясь выражением [math] \ln(1+x) \approx x + o(x) [/math] и логарифмируя, выводим: [math] \sum_{p} {\ln(1 + \dfrac{1}{p} + \dfrac{1}{p^2} + \cdots)} \approx \sum_{p} { (\dfrac{1}{p} + \dfrac{1}{p^2} + \cdots)} \leqslant \dfrac{c}{p^2} [/math] — расходится.

Теорема о расходимости ряда [math]\sum_{}^{}\frac{1}{p}[/math][править]

Теорема:
Ряд [math]\sum_{}^{}\dfrac{1}{p}[/math], где [math]p[/math] — простое, расходится.
Доказательство:
[math]\triangleright[/math]

Работая в условиях предыдущей теоремы, продолжаем: [math] \ln(1+x) \leqslant x[/math], тогда [math] \sum_{}^{} {\ln(1 + \dfrac{1}{p} + \cdots)} \leqslant \sum_{}^{} {( \dfrac{1}{p} + \dfrac{1}{p^2} + \cdots)}[/math].

Финально: [math] \sum_{}^{} \dfrac{1}{p} \geqslant \sum_{}^{} {[\ln(1 + \dfrac{1}{p} + \dfrac{1}{p^2} + \cdots) - \dfrac{c}{p^2}]} [/math] — расходится.
[math]\triangleleft[/math]

См. также[править]

Источники инфомации[править]

  • А.А. Бухштаб. "Теория чисел" — Просвещение. 1966 г. — с. 28 - 33.
  • И. М. Виноградов. "Основы теории чисел" — c. 18 - 20.