Редактирование: Равномерная сходимость функционального ряда

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
[[Определение функционального ряда|<<]] [[Операции анализа с функциональными рядами|>>]]
 
 
== Поточечная сходимость ==
 
== Поточечная сходимость ==
 
То, как была определена сумма функционального ряда, не учитывает то, что функция {{---}} закон
 
То, как была определена сумма функционального ряда, не учитывает то, что функция {{---}} закон
Строка 5: Строка 4:
 
изолированно.
 
изолированно.
  
Пусть на <tex>E</tex> <tex>f_n</tex> обладает свойством <tex>P</tex>(например, непрерывность на <tex>E</tex>). И пусть для любого <tex> x \in E </tex> есть предел соответствующей числовой последовательности. Возникает вопрос: "Будет ли <tex>f = \lim\limits_{n \rightarrow \infty} f_n</tex> обладать свойством <tex>P</tex>?"
+
Пусть на <tex>E</tex> <tex>f_n</tex> обладает свойством <tex>P</tex>(например, непрерывность на <tex>E</tex>). И пусть <tex>\forall x</tex> есть  
 +
сумма ряда. Возникает вопрос: "Будет ли <tex>f = \sum f_n</tex> обладать свойством <tex>P</tex>?"
  
Приведем пример, показывающий, что если требовать лишь поточечной сходимости, то для <tex> f </tex>  
+
Приведем пример, показывающий, что если требовать лишь поточечной сходимости, то для <tex>\sum f_n</tex>  
 
свойство <tex>P</tex> может отсутствовать.
 
свойство <tex>P</tex> может отсутствовать.
  
Строка 14: Строка 14:
 
0, & x \in (\frac1n; 1]\\
 
0, & x \in (\frac1n; 1]\\
 
\end{cases}</tex>
 
\end{cases}</tex>
 
[[file:picture1.png|300px]]
 
  
 
Все <tex>f_n</tex> непрерывны на <tex>[0; 1]</tex>. <tex>f_n(0) = 1 \to 1</tex>, <tex>f(0) = 1</tex>.
 
Все <tex>f_n</tex> непрерывны на <tex>[0; 1]</tex>. <tex>f_n(0) = 1 \to 1</tex>, <tex>f(0) = 1</tex>.
Строка 32: Строка 30:
 
|definition=
 
|definition=
 
<tex>f_1, f_2, \ldots</tex> равномерно сходится к <tex>f(x)</tex>, если  
 
<tex>f_1, f_2, \ldots</tex> равномерно сходится к <tex>f(x)</tex>, если  
<tex>\forall \varepsilon\ > 0\ \exists N\ \forall n > N\ \forall x \in E : |f_n(x) - f(x)| < \varepsilon</tex>
+
<tex>\forall \varepsilon\ \exists N\ \forall n > N\ \forall x \in E : |f_n(x) - f(x)| < \varepsilon</tex>
 
Пишут, что <tex>f_n \rightrightarrows f</tex>.
 
Пишут, что <tex>f_n \rightrightarrows f</tex>.
 
}}
 
}}
Строка 40: Строка 38:
 
Пусть на <tex>E</tex> задан функциональный ряд <tex>\sum\limits_{n = 1}^\infty f_n</tex>. Тогда он равномерно сходится к
 
Пусть на <tex>E</tex> задан функциональный ряд <tex>\sum\limits_{n = 1}^\infty f_n</tex>. Тогда он равномерно сходится к
 
<tex>f = \sum f_n</tex>, если
 
<tex>f = \sum f_n</tex>, если
<tex>\forall\varepsilon\ > 0\ \exists N\ \forall n > N\ \forall x \in E : |S_n(x) - f(x)| < \varepsilon</tex>
+
<tex>\forall\varepsilon\ \exists N\ \forall n > N\ \forall x \in E : |s_n(x) - f(x)| < \varepsilon</tex>
 
}}
 
}}
  
Далее всё будем писать на языке функциональных рядов, так как их наиболее удобно использовать в  
+
Далее всё будем писать на языке функциональных рядов, так как они наиболее используемый аппарат в  
математическом анализе, и вообще это очень круто и популярно.
+
математическом анализе.
  
 
== Критерий Коши равномерной сходимости ==
 
== Критерий Коши равномерной сходимости ==
Строка 50: Строка 48:
 
{{Теорема
 
{{Теорема
 
|about=Критерий Коши равномерной сходимости
 
|about=Критерий Коши равномерной сходимости
|statement=Ряд равномерно сходится на <tex>E</tex> <tex>\iff</tex> <tex>\forall\varepsilon\ > 0\ \exists N\ \forall m, n : m \geq n > N\ \forall x \in E : \left|\sum\limits_{k = n}^m f_k(x)\right| < \varepsilon</tex>  
+
|statement=Ряд равномерно сходится на <tex>E</tex> <tex>\iff</tex> <tex>\forall\varepsilon\ \exists N\ \forall m \geq n > N\ \forall x \in E : \left|\sum\limits_{k = n}^m f_k(x)\right| < \varepsilon</tex>  
 
|proof=
 
|proof=
 
<tex>\Longrightarrow</tex> Пусть ряд равномерно сходится.
 
<tex>\Longrightarrow</tex> Пусть ряд равномерно сходится.
  
<tex>\sum\limits_{k = n}^m f_k = S_m - S_{n - 1}</tex>
+
<tex>\sum\limits_{k = n}^m f_k = s_m - s_{n - 1}</tex>
  
<tex>\left|\sum\limits_{k = n}^m f_k \right| = |(S_m - S) + (S - S_{n - 1})|</tex>, где <tex>S</tex> {{---}} сумма ряда. Тогда
+
<tex>\left|\sum\limits_{k = n}^m \right| = |(s_m - s) - (s - s_{n - 1})|</tex>, где <tex>s</tex> {{---}} сумма ряда. Тогда
  
<tex>\left|\sum\limits_{k = n}^m f_k(x)\right| \leq |S_m - S| + |S_{n - 1} - S|</tex>
+
<tex>\left|\sum\limits_{k = n}^m f_k(x)\right| \leq |s_m - s| + |s_{n - 1} - s|</tex>
  
По определению равномерной сходимости, <tex>\forall \varepsilon\ \exists N\ \forall p > N\ \forall x \in E : |S_p(x) - S(x)| < \varepsilon</tex>.
+
По определению равномерной сходимости, <tex>\forall \varepsilon\ \exists N\ \forall p > N\ \forall x \in E : |s_p(x) - s(x)| < \varepsilon</tex>.
  
<tex>m, n - 1 > N </tex>
+
<tex>m,n - 1 < N </tex>
  
 
В силу предыдущего неравенства, <tex>\forall x \in E : \left|\sum\limits_{k = n}^m f_k(x)\right| \leq 2\varepsilon</tex>, то есть,  
 
В силу предыдущего неравенства, <tex>\forall x \in E : \left|\sum\limits_{k = n}^m f_k(x)\right| \leq 2\varepsilon</tex>, то есть,  
Строка 69: Строка 67:
  
 
<tex>\Longleftarrow</tex> Пусть выполняется условие критерия Коши.
 
<tex>\Longleftarrow</tex> Пусть выполняется условие критерия Коши.
 
+
<tex>\forall x \in E</tex> для <tex>\sum\limits_{n = 1}^\infty f_n(x)</tex> выполняется критерий Коши сходиммости числовых рядов.  
<tex>\forall x \in E</tex> для <tex>\sum\limits_{n = 1}^\infty f_n(x)</tex> выполняется критерий Коши сходимости числовых рядов.  
 
 
Значит, этот ряд сходится. На всем <tex>E</tex> определена его сумма. Осталось установить равномерную сходимость ряда.
 
Значит, этот ряд сходится. На всем <tex>E</tex> определена его сумма. Осталось установить равномерную сходимость ряда.
  
Строка 76: Строка 73:
  
 
Как и в первой половине доказательства,  
 
Как и в первой половине доказательства,  
<tex>|S_m(x) - S_{n - 1}(x)| \leq \varepsilon</tex>, но <tex>S_p(x) \to S(x)</tex>. В неравенстве с <tex>\varepsilon</tex>  
+
<tex>|s_m(x) - s_{n - 1}(x)| \leq \varepsilon</tex>, но <tex>s_p(x) \to s(x)</tex>. В неравенстве с <tex>\varepsilon</tex> <tex>X</tex>  
можно подставлять любой фиксированный <tex>x</tex>. Устремим <tex>m \to \infty</tex>: <tex>\forall n > N\ \forall x \in E : |S_n(x) - S(x)| \leq \varepsilon</tex>
+
можно подставлять любой фиксированный <tex>x</tex>. Устремим <tex>n \to \infty</tex>: <tex>\forall m > N\ \forall x \in E : |s_m(x) - s(x)| \leq \varepsilon</tex>
  
 
Значит, определение равномерной сходимости проверено.
 
Значит, определение равномерной сходимости проверено.
Строка 84: Строка 81:
 
== Признак Вейерштрасса ==  
 
== Признак Вейерштрасса ==  
  
Существует простой признак для проверки равномерной сходимости (признак Вейерштрасса)
+
Существует простой признак для проверки равномерной сходимости(принак Вейерштрасса)
  
 +
{{Определение
 +
|definition=
 
Можно рассматривать <tex>\sum\limits_{n = 1}^\infty |f_n|</tex> и при этом сохраняется терминология числовых рядов,
 
Можно рассматривать <tex>\sum\limits_{n = 1}^\infty |f_n|</tex> и при этом сохраняется терминология числовых рядов,
 
связанная с абсолютной и условной сходимостью.
 
связанная с абсолютной и условной сходимостью.
 +
}}
  
 
Как и в рядах, абсолютная сходимость сильнее сходимости: из абсолютной сходимости вытекает сходимость.
 
Как и в рядах, абсолютная сходимость сильнее сходимости: из абсолютной сходимости вытекает сходимость.
  
{{Теорема
+
{{Утверждение
 
|author=Вейерштрасс
 
|author=Вейерштрасс
 
|statement=
 
|statement=
<tex>\sum\limits_{n = 1}^\infty f_n</tex>, <tex>\forall n \in \mathbb{N} </tex> , <tex> \forall x \in E : |f_n(x)| \leq a_n</tex>, <tex>\sum\limits_{n = 1}^\infty a_n</tex> {{---}} сходится.
+
<tex>\sum\limits_{n = 1}^\infty f_n</tex>, <tex>\forall x \in E : |f_n(x)| \leq a_n</tex>, <tex>\sum\limits_{n = 1}^\infty a_n</tex> {{---}} сходится.
 
Тогда <tex>\sum\limits_{n = 1}^\infty f_n</tex> равномерно сходится на <tex>E</tex>.
 
Тогда <tex>\sum\limits_{n = 1}^\infty f_n</tex> равномерно сходится на <tex>E</tex>.
 
|proof=
 
|proof=
Строка 101: Строка 101:
 
<tex>\left|\sum\limits_{k = n}^m f_k(x) \right|</tex> <tex>\leq \sum\limits_{k = n}^m |f_k(x)|</tex> <tex>\leq \sum\limits_{k = n}^m a_k</tex>
 
<tex>\left|\sum\limits_{k = n}^m f_k(x) \right|</tex> <tex>\leq \sum\limits_{k = n}^m |f_k(x)|</tex> <tex>\leq \sum\limits_{k = n}^m a_k</tex>
  
<tex>\sum\limits_{k = n}^m a_k < +\infty \Rightarrow \forall\varepsilon\ > 0\ \exists N\ \forall m \geq n > N : \sum\limits_{k = n}^m a_k < \varepsilon</tex>
+
<tex>\sum\limits_{k = n}^m a_k < +\infty \Rightarrow \forall\varepsilon\ \exists N\ \forall m \geq n > N : \sum\limits_{k = n}^m a_k < \varepsilon</tex>
  
 
Сопоставляя с предыдущим неравенством, которое верно <tex>\forall x</tex>,
 
Сопоставляя с предыдущим неравенством, которое верно <tex>\forall x</tex>,
  
<tex>\left|\sum\limits_{k = n}^m f_k(x)\right| < \varepsilon</tex>. Тогда, по критерию Коши, ряд равномерно сходится.
+
<tex>\left|\sum\limits_{k = n}^m f_k(x)\right| \leq \varepsilon</tex>. Тогда, по критерию Коши, ряд равномерно сходится.
}}
 
== Признак Абеля-Дирихле ==
 
{{Теорема
 
|author=Абель-Дирихле
 
|statement=Для равномерной сходимости на множестве <tex>E</tex> ряда <tex>\sum\limits_{n = 1}^\infty a_n(x) b_n(x)</tex> , <tex> a_n:E \to \mathbb C</tex> и <tex> b_n:E \to \mathbb R</tex> достаточно, чтобы выполнялась пара условий <tex> \forall x \in E </tex>:
 
 
 
1)Частичные суммы <tex> S_k(x)= \sum\limits_{n = 1}^k a_n(x) </tex>  ряда <tex>\sum\limits_{n = 1}^\infty a_n(x) </tex> равномерно ограничены на <tex>E</tex>;
 
 
 
2)Последовательность функций <tex>b_n(x)</tex> монотонна и равномерно сходится к нулю на <tex>E</tex>.
 
 
 
|proof=
 
 
 
Монотонность последовательности <tex>b_n(x)</tex> позволяет при каждом <tex>x \in E</tex> записать оценку:
 
 
 
<tex> |\sum\limits_{k = n}^m a_k(x) b_k(x)| \leq 4  max |A_k(x)| * max( |b_n(x)|, |b_m(x)| )</tex>       
 
 
 
где <tex> n - 1 \leq k \leq m </tex>  и в качестве <tex> A_k(x)</tex> возьмем <tex> S_k(x) - S_{n-1}(x) </tex> .
 
 
 
Если выполнена пара условий 1) и 2), то с одной стороны существует такая постоянная <tex>M</tex>,что <tex>|A_k(x)| \leq  M</tex> при любом <tex> k \in N </tex> и любом <tex>x \in E</tex>, а с другой стороны, какого бы ни было число <tex>\varepsilon > 0 </tex>, при всех достаточно больших значениях <tex>m</tex> и <tex>n</tex> и любом <tex> x\in E</tex> будет выполнено неравенство <tex> max( |b_n(x)|, |b_m(x)| ) < \frac{\varepsilon}{4M} </tex>. Значит, что при всех достаточно больших значениях <tex>m</tex> и <tex>n</tex> и любом <tex> x \in E </tex> будет <tex>|\sum\limits_{k = n}^m a_k(x) b_k(x)| < \varepsilon </tex>, т.е. для рассматриваемого ряда выполнен критерий Коши равномерной сходимости.
 
 
}}
 
}}
 
[[Определение функционального ряда|<<]] [[Операции анализа с функциональными рядами|>>]]
 
[[Категория:Математический анализ 1 курс]]
 

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: