Редактирование: Расчёт вероятности поглощения в состоянии

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 1: Строка 1:
[[Марковская цепь#Поглощающая цепь| Поглощающее состояние]] — состояние с вероятностью перехода в самого себя <tex>p_{ii}=1</tex>.
+
Поглощающее(существенное) состояние цепи Маркова — состояние с вероятностью перехода в самого себя <tex>p_{ii}=1</tex>.
 
+
Составим матрицу <tex>G</tex>, элементы которой <tex>g_{ij}</tex> равны вероятности того, что, выйдя из <tex>i</tex>, попадём в поглощающее состояние <tex>j</tex>.
Составим матрицу <tex>\mathtt{G}</tex>, элементы которой <tex>g_{ij}</tex> равны вероятности того, что, выйдя из <tex>i</tex>, попадём в поглощающее состояние <tex>j</tex>.
 
 
{{Теорема
 
{{Теорема
 
|statement=
 
|statement=
<tex> \mathtt{G} = N \cdot R </tex>, где <tex>N</tex> — фундаментальная матрица, и <tex>R</tex> — матрица перехода из несущественных состояний в существенные.
+
<tex> G = N \cdot R </tex>, где <tex>N</tex> — фундаментальная матрица, и <tex>R</tex> — матрица перехода из несущественных состояний в существенные.
 
|proof=
 
|proof=
 
Пусть этот переход будет осуществлён за <tex>r</tex> шагов:  <tex>i</tex> &rarr;  <tex>i_{1}</tex> &rarr; <tex>i_{2}</tex> &rarr; <tex>\ldots</tex> &rarr; <tex>i_{r-1}</tex> &rarr; j, где все <tex>i, i_{1}, \ldots i_{r-1}</tex> являются несущественными.
 
Пусть этот переход будет осуществлён за <tex>r</tex> шагов:  <tex>i</tex> &rarr;  <tex>i_{1}</tex> &rarr; <tex>i_{2}</tex> &rarr; <tex>\ldots</tex> &rarr; <tex>i_{r-1}</tex> &rarr; j, где все <tex>i, i_{1}, \ldots i_{r-1}</tex> являются несущественными.
 
Тогда рассмотрим сумму <tex>\sum\limits_{\forall(i_{1} \ldots i_{r-1})} {p_{i, i_{1}} \cdot p_{i_{1}, i_{2}} \cdot  \ldots  \cdot p_{i_{r-1}, j}} = Q^{r-1} \cdot R</tex>, где <tex>Q</tex> — матрица переходов между несущественными состояниями, <tex>R</tex> — из несущественного в существенное.  
 
Тогда рассмотрим сумму <tex>\sum\limits_{\forall(i_{1} \ldots i_{r-1})} {p_{i, i_{1}} \cdot p_{i_{1}, i_{2}} \cdot  \ldots  \cdot p_{i_{r-1}, j}} = Q^{r-1} \cdot R</tex>, где <tex>Q</tex> — матрица переходов между несущественными состояниями, <tex>R</tex> — из несущественного в существенное.  
Матрица <tex>\mathtt{G}</tex> определяется их суммированием по всем длинам пути из i в j: <tex>\mathtt{G} = \sum\limits_{r = 1}^{\infty}{Q^{r-1} \cdot R} = (I + Q + Q^{2} + Q^{3} + \ldots) \cdot R = NR</tex>, т.к. <tex>(I + Q + Q^2 + \ldots) \cdot (I - Q) = I - Q + Q - Q^{2} + \ldots = I</tex>, а фундаментальная матрица марковской цепи <tex>N = (I - Q)^{-1}</tex> }}
+
Матрица <tex>G</tex> определяется их суммированием по всем длинам пути из i в j: <tex>G = \sum\limits_{r = 1}^{\infty}{Q^{r-1} \cdot R} = (I + Q + Q^{2} + Q^{3} + \ldots) \cdot R = NR</tex>, т.к. <tex>(I + Q + Q^2 + \ldots) \cdot (I - Q) = I - Q + Q - Q^{2} + \ldots = I</tex>, а фундаментальная матрица марковской цепи <tex>N = (I - Q)^{-1}</tex> }}
 
==Псевдокод==
 
==Псевдокод==
Выведем ответ: в <tex>\mathtt{i}</tex>-ой строке вероятность поглощения в <tex>\mathtt{i}</tex>-ом состоянии. Естественно, для несущественного состояния это <tex>0</tex>, в ином случае <tex>\mathtt{p_i}=\left(\sum\limits_{k=1}^{n} \mathtt{G}[k][j]+1\right)/n</tex> где <tex>\mathtt{j}</tex> — номер соответствующий <tex>\mathtt{i}</tex>-ому состоянию в матрице <tex>\mathtt{G}</tex> (т.е. под которым оно располагалось в матрице <tex> \mathtt{R} </tex> т.е. значение <tex>\mathtt{position}[\mathtt{i}]</tex>). Прибавлять <tex>1</tex> нужно т.к. вероятность поглотиться в <tex>\mathtt{i}</tex>-ом поглощающем состоянии, оказавшись изначально в нем же равна <tex>1</tex>.
+
Выведем ответ: в <tex>\mathtt{i}</tex>-ой строке вероятность поглощения в <tex>\mathtt{i}</tex>-ом состоянии. Естественно, для несущественного состояния это <tex>0</tex>, в ином случае <tex>\mathtt{p_i}=((\sum\limits_{k=1}^{n} G[k][j]+1)/n</tex> где <tex>\mathtt{j}</tex> — номер соответствующий <tex>\mathtt{i}</tex>-ому состоянию в матрице <tex>\mathtt{G}</tex> (т.е. под которым оно располагалось в матрице <tex> \mathtt{R} </tex> т.е. значение <tex>\mathtt{position[i]}</tex>). Прибавлять <tex>1</tex> нужно т.к. вероятность поглотиться в <tex>\mathtt{i}</tex>-ом поглощающем состоянии, оказавшись изначально в нем же равна <tex>1</tex>.
*<tex>\mathtt{probability}[\mathtt{i}]</tex> — вероятность поглощения в <tex>\mathtt{i}</tex>-ом состоянии
+
*<tex>\mathtt{probability[i]}</tex> — вероятность поглощения в <tex>\mathtt{i}</tex>-ом состоянии
*<tex>\mathtt{absorbing}[\mathtt{i}]</tex> — является ли <tex>\mathtt{i}</tex>-е состояние поглощающим
+
*<tex>\mathtt{absorbing[i]}</tex> — является ли i-е состояние поглощающим
  
  '''float[]''' getAbsorbingProbability(absorbing: '''boolean'''[n], G: '''float'''[n][n], position: '''int'''[n]):
+
  '''float[]''' getAbsorbingProbability(absorbing: boolean[n], G: float[n][n]):
 
     '''float''' probability[n]
 
     '''float''' probability[n]
 
 
     '''for''' i = 0 '''to''' n - 1
 
     '''for''' i = 0 '''to''' n - 1
 
       '''float''' prob = 0
 
       '''float''' prob = 0
Строка 25: Строка 23:
 
           prob /= n
 
           prob /= n
 
       probability[i] = prob
 
       probability[i] = prob
 
 
     '''return''' probability
 
     '''return''' probability
  

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблон, используемый на этой странице: