Редактирование: Расширения полей

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 13: Строка 13:
 
}}
 
}}
  
<tex>K \subset F, \alpha \in F</tex>, рассмотрим <tex>K(\alpha)</tex> {{---}} наименьшее подполе <tex>F</tex>, которое содержит <tex>K</tex> и <tex>\alpha</tex> (пересечение всех таких подполей содержится в <tex>K</tex> и <tex>\alpha </tex> <tex>\Rightarrow</tex> получается тоже подполе (замкнутое относительно операций сложения, умножения и обратно). <br />
 
Все возможные записи с <tex>K</tex> и <tex>\alpha</tex> образуют поле <tex>K(\alpha)</tex> : <tex>\frac{(K_1+\alpha)^7}{\alpha + K_2}</tex> и т.п. <br />
 
Если <tex>\alpha \in K \Rightarrow K(\alpha)=K, K \subset K(\alpha) \subset F, K(\alpha)</tex> {{---}} расширение поля <tex>K</tex>. (простое расширение {{---}} присоединение одного элемента). <br />
 
<tex>K \subset K(\alpha) </tex> <br />
 
# <tex>\exists f \in K[x] \colon f(\alpha) = 0</tex> {{---}} простое алгебраическое
 
# <tex>\nexists f</tex> {{---}} простое трансцендентное
 
# <tex>K(\alpha) \cong K(x) = \left\{\frac{p(x)}{q(x)} \mid p(x),q(x) \in K[x] \right\}</tex>
 
 
[[Категория: Поля]]
 
[[Категория: Поля]]

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)