Регулярные языки: два определения и их эквивалентность

Материал из Викиконспекты
Версия от 11:11, 4 ноября 2011; 192.168.0.2 (обсуждение) (изменено доказательство теоремы)
Перейти к: навигация, поиск

Регулярные языки: два определения и их эквивалентность

Определение:
Регулярный язык [math] Reg [/math] над алфавитом [math] \Sigma = \left\{c_1, c_2, ... ,c_k \right\} [/math] — язык, который может быть получен из букв алфавита при помощи последовательных применений операций объединения, конкатенации или итерации и никаких других, т.е.:

Обозначим [math]R_0=\left\{\varnothing, \left\{\varepsilon \right\}, \left\{c_1 \right\}, \left\{c_2 \right\} ... \left\{c_k \right\} \right\}[/math]

Определим [math]R_{i+1}[/math] через [math]R_i[/math]: [math]R_{i+1} = R_i \cup \left\{L_1 \cup L_2, L_1L_2, L_1^*| L_1, L_2 \in R_i\right\}[/math].

Тогда: [math]Reg = \bigcup\limits_{i=0}^{\infty}R_i[/math].


Определение:
Пусть задан алфавит [math] \Sigma = \left\{c_1, c_2, ... ,c_k \right\} [/math].

Множество [math]R[/math] будем называть надрезом, если:

  1. [math]R_0 \subset R[/math], где [math]R_0=\left\{\varnothing, \left\{\varepsilon \right\}, \left\{c_1 \right\}, \left\{c_2 \right\} ... \left\{c_k \right\} \right\}[/math]
  2. [math] L_1, L_2 \in R \Rightarrow L_1 \cup L_2 \in R, L_1L_2 \in R, L_1^* \in R[/math]
Тогда регулярным языком [math]Reg'[/math] над алфавитом [math] \Sigma = \left\{c_1, c_2, ... ,c_k \right\} [/math] называется пересечение всех надрезов: [math]Reg'=\bigcap\limits_{R - nadrez}R[/math].


Теорема:
Определения 1 и 2 эквивалентны.
Доказательство:
[math]\triangleright[/math]

Докажем, что [math]Reg \subset Reg'[/math] и [math]Reg' \subset Reg[/math].

  • [math]Reg \subset Reg'[/math]

По определению [math]Reg = \bigcup\limits_{i=0}^{\infty}R_i[/math]. Рассмотрим [math] \forall i [/math] и [math] \forall [/math] надрез [math] R [/math]: [math]R_i \subset R[/math] (следует из определения [math]R_i[/math] и определения надреза). Это выполнимо для любого надрезa [math] R \Rightarrow R_i \subset Reg'[/math]. Так как это выполнено для [math] \forall i \Rightarrow \bigcup\limits_{i=0}^{\infty}R_i \subset Reg' [/math].

  • [math]Reg' \subset Reg[/math]

Из определения [math]Reg[/math] следует, что:

  1. [math] Reg_0 \subset Reg [/math].
  2. [math] L_1, L_2 \in Reg \Rightarrow \exists i [/math], что [math] L_1\in R_i [/math] и [math] \exists j [/math] , что [math] L_2 \in R_j \Rightarrow L_1L_2 \in R_{max(i, j)+1}, L_1 \cup L_2\in R_{max(i, j)+1}, L_1^* \in R_{i + 1}[/math] [math] \Rightarrow L_1L_2 \in Reg, L_1 \cup L_2\in Reg, L_1^* \in Reg [/math].

Значит [math]Reg - [/math] надрез. А так как [math]Reg'=\bigcap\limits_{\text{R- nadrez}}R[/math], то [math]Reg' \subset Reg[/math].

Таким образом, теорема доказана.
[math]\triangleleft[/math]