Рефлексивное отношение — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
В математике бинарное отношение <math>R</math> на множестве <math>X</math> называется '''рефлексивным''', если всякий элемент этого множества находится в отношении <math>R</math> с самим собой.
+
В математике [[Определения отношения|бинарное отношение]] <math>R</math> на множестве <math>X</math> называется '''рефлексивным''', если всякий элемент этого множества находится в отношении <math>R</math> с самим собой.
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
 
Отношение <math>R</math> называется рефлексивным, если <math>\forall a \in X:\ (a R a)</math>.
 
Отношение <math>R</math> называется рефлексивным, если <math>\forall a \in X:\ (a R a)</math>.
 
}}
 
}}
Свойство рефлексивности при заданных отношениях графом состоит в том, что каждая вершина имеет петлю — дугу (х, х), а матрица смежности этого графа на главной диагонали имеет единицы.  
+
Свойство рефлексивности при заданных отношениях [[Основные определения: граф, ребро, вершина, степень, петля, путь, цикл|графом]] состоит в том, что каждая вершина имеет петлю — дугу (х, х), а матрица смежности этого графа на главной диагонали имеет единицы.  
  
 
Если это условие не выполнено ни для какого элемента множества <math>X</math>, то отношение <math>R</math> называется '''антирефлексивным'''.
 
Если это условие не выполнено ни для какого элемента множества <math>X</math>, то отношение <math>R</math> называется '''антирефлексивным'''.

Версия 19:19, 10 октября 2010

В математике бинарное отношение [math]R[/math] на множестве [math]X[/math] называется рефлексивным, если всякий элемент этого множества находится в отношении [math]R[/math] с самим собой.

Определение:
Отношение [math]R[/math] называется рефлексивным, если [math]\forall a \in X:\ (a R a)[/math].

Свойство рефлексивности при заданных отношениях графом состоит в том, что каждая вершина имеет петлю — дугу (х, х), а матрица смежности этого графа на главной диагонали имеет единицы.

Если это условие не выполнено ни для какого элемента множества [math]X[/math], то отношение [math]R[/math] называется антирефлексивным.

Если антирефлексивное отношение задано графом, то ни у одной вершины не будет петли - дуги (x, x), а в матрице смежности на главной диагонали будут нули.

Формально антирефлексивность отношения [math]R[/math] определяется как: [math]\forall a \in X:\ \neg (a R a)[/math].

Примеры рефлексивных отношений

  • Отношения эквивалентности:
    • отношение равенства [math]=\;[/math];
    • отношение сравнимости по модулю;
    • отношение параллельности прямых и плоскостей;
    • отношение подобия геометрических фигур.
  • Отношения частичного порядка:
    • отношение нестрогого неравенства [math]\leqslant[/math];
    • отношение нестрогого подмножества [math] \subseteq [/math];
    • отношение делимости [math]\,\vdots\,[/math].

Примеры антирефлексивных отношений

  • отношение строгого неравенства [math]\lt \;[/math];
  • отношение строгого подмножества [math]\subset[/math].