Сеть Бетчера — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
м (Убрал сокращение и изменил определение битонической последовательности)
Строка 7: Строка 7:
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
'''Битонической последовательностью ''(bitonic sequence)''''' называется числовая последовательность, которая сначала монотонно возрастает, а затем монотонно убывает, или последовательность, которая приводится к такому виду путем циклического сдвига.}}
+
'''Битонической последовательностью ''(bitonic sequence)''''' называется конечный упорядоченный набор (кортеж) из вещественных чисел, в котором они сначала монотонно возрастают, а затем монотонно убывают, или набор, который приводится к такому виду путем циклического сдвига.}}
 
Здесь мы воспользуемся [[0-1 принцип|0-1 принципом]] и будем рассматривать только нуль-единичные битонические последовательности:
 
Здесь мы воспользуемся [[0-1 принцип|0-1 принципом]] и будем рассматривать только нуль-единичные битонические последовательности:
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
'''Нуль-единичные битонические последовательности''' {{---}} последовательности вида <tex>0^i1^j0^k</tex> или <tex>1^i0^j1^k</tex> для целых <tex>i,j,k\ge0</tex>, где <tex>1^i</tex> или <tex>0^i</tex> обозначает <tex>i</tex> идущих подряд единиц или нулей соответственно.}}
+
'''Нуль-единичные битонические последовательности''' {{---}} кортежи из нулей и единиц вида <tex>0^i1^j0^k</tex> или <tex>1^i0^j1^k</tex> для целых <tex>i,j,k\ge0</tex>, где <tex>1^i</tex> или <tex>0^i</tex> обозначает <tex>i</tex> идущих подряд единиц или нулей соответственно.}}
В качестве примеров нуль-единичной битонической последовательности можно привести последовательности <tex>00111000</tex>,  <tex>11000111</tex>,  <tex>1110</tex>,  <tex>1</tex>,  <tex>000</tex>.
+
Приведем несколько примеров нуль-единичной битонической последовательности: <tex>00111000</tex>,  <tex>11000111</tex>,  <tex>1110</tex>,  <tex>1</tex>,  <tex>000</tex>.
  
 
<!-- Эта фраза - собственного производства. Но раз АС считает её слишком "корменовской", то я её уберу -->
 
<!-- Эта фраза - собственного производства. Но раз АС считает её слишком "корменовской", то я её уберу -->
Строка 19: Строка 19:
  
 
== Битонический сортировщик ==
 
== Битонический сортировщик ==
Построим сеть, которая эффективно сортирует все битонические последовательности {{---}} т.н. '''битонический сортировщик ''(bitonic sorter)'''''.
+
Построим сеть, которая эффективно сортирует все битонические последовательности {{---}} так называемый '''битонический сортировщик ''(bitonic sorter)'''''.
  
 
{|
 
{|

Версия 23:03, 18 июня 2012

Сеть Бетчера (Batcher bitonic mergesort) — сортирующая сеть размером [math]O(n \log^2n)[/math] и глубиной [math]O(\log^2n)[/math], где [math]n[/math] — количество элементов для сортировки. Её авторство принадлежит Кену Бетчеру.

В этой статье будет описана сортирующая сеть для случая когда [math]n[/math] — степень двойки ([math]n = 2^k[/math]).

Битоническая последовательность

Сначала введем все необходимые понятия для построения сортирующей сети Бетчера.

Определение:
Битонической последовательностью (bitonic sequence) называется конечный упорядоченный набор (кортеж) из вещественных чисел, в котором они сначала монотонно возрастают, а затем монотонно убывают, или набор, который приводится к такому виду путем циклического сдвига.

Здесь мы воспользуемся 0-1 принципом и будем рассматривать только нуль-единичные битонические последовательности:

Определение:
Нуль-единичные битонические последовательности — кортежи из нулей и единиц вида [math]0^i1^j0^k[/math] или [math]1^i0^j1^k[/math] для целых [math]i,j,k\ge0[/math], где [math]1^i[/math] или [math]0^i[/math] обозначает [math]i[/math] идущих подряд единиц или нулей соответственно.

Приведем несколько примеров нуль-единичной битонической последовательности: [math]00111000[/math], [math]11000111[/math], [math]1110[/math], [math]1[/math], [math]000[/math].

Далее будет показано, что битоническую последовательность можно легко получить из двух отсортированных, поэтому если мы найдем способ эффективно её сортировать, то сможем столь же эффективно сливать (объединять) две отсортированные последовательности в одну. На этой операции и основывается принцип работы описываемой в этой статье сети сортировки.

Битонический сортировщик

Построим сеть, которая эффективно сортирует все битонические последовательности — так называемый битонический сортировщик (bitonic sorter).

Полуфильтр

Битонический сортировщик представляет собой каскад так называемых полуфильтров (half-cleaner). Каждый полуфильтр — сеть компараторов единичной глубины, в которой [math]i[/math]-й входной провод сравнивается со входным проводом с номером [math]\frac{n}{2} + i[/math], где [math]i=1,2,...,\frac{n}{2}[/math] (количество входов [math]n[/math] — чётное).


Лемма:
Если на вход в полуфильтр подать битоническую последовательность из нулей и единиц длиной [math]n[/math], то на выходе мы получим две битонические последовательности длиной [math]\frac{n}{2}[/math] такие, что каждый элемент из верхней последовательности не превосходит любой элемент из нижней, и что одна из них будет однородной (clean) — целиком состоящей либо из нулей, либо из единиц.
Доказательство:
[math]\triangleright[/math]
Для всех [math]i=1,2,...,\frac{n}{2}[/math] полуфильтр сравнивает провода с номерами [math]i[/math] и [math]i+\frac{n}{2}[/math]. Без потери общности будем рассматривать входную последовательность вида [math]0...01...10...0[/math] (для последовательности вида [math]1...10...01...1[/math] рассуждения аналогичны). В зависимости от того в каком блоке из последовательно расположенных нулей и единиц находится средняя точка [math]\frac{n}{2}[/math] входной последовательности, можно выделить 3 случая, причем один из случаев (когда средняя точка попадает на блок из единиц) можно разбить еще на 2 случая. Все 4 случая разобраны на рисунке справа. Для каждого из них лемма выполняется.
[math]\triangleleft[/math]
Полуфильтр для 8 проводов.
Все случаи попадания битонической последовательности на полуфильтр.


Построение битонического сортировщика

Теперь используем полуфильтры для сортировки битонических последовательностей. Как только что было доказано, один полуфильтр разделяет битоническую последовательность на две равные части, одна из которых однородна, а другая сама по себе является битонической последовательностью, причем части расположены в правильном порядке. Тогда мы можем каждую часть снова отправить в полуфильтр вдвое меньшего размера, чем предыдущий. Затем, если нужно, четыре получившихся части снова отправить в полуфильтры и так далее, пока количество проводов в одной части больше [math]1[/math].

Битонический сортировщик на восемь входов с выделенными полуфильтрами.

Так можно построить сеть для числа входов, являющегося степенью двойки. Поскольку каждый вертикальный ряд полуфильтров вдвое сокращает число входов, которые необходимо отсортировать, глубина всей сети равна [math]\log_{2}n[/math], где [math]n[/math] — число входов. Количество компараторов равно [math]\frac{n \log_2{n}}{2}[/math], потому что размер одного полуфильтра на [math]n[/math] входов — [math]\frac{n}{2}[/math] компараторов, а в слое битонического сортировщика находится [math]2^{i-1}[/math] полуфильтров, где [math]i[/math] — номер слоя, начиная с единицы.

Объединяющая сеть

Битонический сортировщик находит своё применение в конструкции так называемой объединяющей сети.

Определение:
Объединяющая сеть (Merger) — сеть компараторов, объединяющая две отсортированные входные последовательности в одну отсортированную выходную последовательность.

Построим объединяющую сеть на основе битонического сортировщика. Для этого рассмотрим наши отсортированные входные последовательности:

Отсортированная последовательность имеет вид [math]0^i1^j[/math] для целых [math]i, j\ge0[/math]. Запишем две входные последовательности как [math]0^i1^j[/math] и [math]0^k1^l[/math]. Если перевернуть вторую последовательность, получится отсортированная по невозрастанию последовательность [math]1^l0^k[/math]. Если теперь записать первую и перевернутую вторую последовательности подряд, получится битоническая последовательность [math]0^i1^{j+l}0^k[/math], которую можно отсортировать в битоническом сортировщике с глубиной [math]O(\log{n})[/math].

Объединяющая сеть является ничем иным как битоническим сортировщиком. Единственное отличие в том, что половина входных проводов расположена в обратном порядке (предполагается, что мы объединяем две сети одинакового размера [math]\frac{n}{2}[/math]). Поэтому первый полуфильтр будет отличаться от остальных — он будет соединять [math]i[/math]-ый провод не с [math]\frac{n}{2} + i[/math]-ым, а с [math]n-i+1[/math]-ым проводом. Схема объединяющей сети для восьми проводов приведена ниже.

Глубина и число компараторов в объединяющей сети очевидно те же, что и в битоническом сортировщике.

Сеть, объединяющая две отсортированные последовательности из четырёх чисел в одну отсортированную последовательность из восьми чисел.

Сортирующая сеть

Построение

Теперь, с помощью описанных выше объединяющих сетей мы построим параллельную версию сортировки слиянием.

Пусть мы хотим отсортировать [math]n=2^k[/math] входов, [math]k[/math] — целое и [math]k \ge0[/math]. Для этого сначала отсортируем пары проводов, поставив в первом слое компаратор между [math]i[/math]-ым и [math]i+1[/math]-ым проводом для нечетных [math]i \lt n[/math]. Затем с помощью объединяющих сетей параллельно объединим отсортированные пары проводов в отсортированные четверки. Затем объединим отсортированные четверки в отсортированные восьмерки. И так далее, пока на выходе очередной объединяющей сети не будет [math]n[/math] проводов.

Сортирующая сеть для восьми проводов.

Так мы построили сеть, сортирующую любую последовательность из нулей и единиц. А это означает, согласно 0-1 принципу, что она будет сортировать и любой набор чисел.

Точные формулы размера и глубины сети

Оценим глубину этой сортирующей сети. Она состоит из [math]\log_2{n}[/math] слоёв объединяющих сетей и каждый слой имеет глубину, зависящую от его номера. В слое с номером [math]i[/math] ([math]1 \le i \le \log_2{n}[/math]) объединяющая сеть имеет глубину [math]\log_2{2^i}[/math], потому как объединяет [math]2^i[/math] проводов. Таким образом глубина всей сортирующей сети в точности равна [math]\sum\limits^{\log_2{n}}_{i = 1}{\log_2{2^i}} = \sum\limits^{\log_2{n}}_{i = 1}{i} = \frac{(1+\log_2{n})\log_2{n}}{2}[/math].

Оценим размер сети. В объединяющей сети на [math]n[/math] входов содержится [math]\frac{n \log_2{n}}{2}[/math] компараторов. Снова просуммируем формулу по числу объединяющих сетей и получим точную оценку [math]\sum\limits^{\log_2{n}}_{i = 1}{ \frac{2^i \log_2{2^i}}{2} } = \sum\limits^{\log_2{n}}_{i = 1}{ 2^{i-1} i} = \frac{n \log_{2}^{2}{n} + 2 \log_2{n}}{4}[/math].

Источники

  • Wikipedia — Bitonic mergesort
  • Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. — 2-е изд. — М.: Издательский дом «Вильямс», 2005. — С. 808—818.