Симуляция одним распределением другого — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 13: Строка 13:
 
По формуле условной вероятности (при условии, что как минимум одна монета выпала решкой)
 
По формуле условной вероятности (при условии, что как минимум одна монета выпала решкой)
 
: <tex>{p}(A \mid B) = </tex>  <tex dpi = "160"> \frac{{p}(A\cap B)}{{p}(B)}</tex>.
 
: <tex>{p}(A \mid B) = </tex>  <tex dpi = "160"> \frac{{p}(A\cap B)}{{p}(B)}</tex>.
Предположим, что у нас есть последовательность экспериментов. Вероятность успеха - <tex>1/4</tex>. Сколько экспериментов будет проведено до того, как будет достигнут успех? Пусть случайная величина <tex>X</tex> равна количествуэкспериментов, необходимых для достижения успеха. Тогда <tex>X</tex> принимает значения <tex>\{1,2,...\}</tex>
+
Предположим, что у нас есть последовательность экспериментов. Вероятность успеха <tex>p = \frac{1}{4}</tex>. Вероятность неудачи <tex>q = 1 - p = \frac{3}{4}</tex> Сколько экспериментов будет проведено до того, как будет достигнут успех? Пусть случайная величина <tex>X</tex> равна количествуэкспериментов, необходимых для достижения успеха. Тогда <tex>X</tex> принимает значения <tex>\{1,2,...\}</tex> и для <tex> k \ge 1 </tex>
 +
: <tex>{p}(X = k) = q^{k-1}p,</tex>
 +
поскольку перед наступлением успешного эксперимента было проведено <tex> k - 1 </tex> неуспешных. Распределение вероятности, удовлетворяющее этому уравнению называется геометрическим распределением.
 +
Так как <tex> q < 1 </tex> можно посчитать математическое ожидание геометрического распределения.
 +
: <tex dpi = "140">E(X) = \sum\limits_{k = 0}^{\infty}kq^{k-1}p = \frac{p}{q}\sum\limits_{k = 0}^{\infty}kq^{k} = \frac{p}{q} \frac{q}{(1 - p)^{2}} = \frac{1}{p} =\frac{1}{\frac{1}{4}} = 4 </tex>
  
 
Док -во
 
Док -во

Версия 14:59, 14 января 2011

Эта статья находится в разработке!

Распределение

Распределение — одно из основных понятий теории вероятностей и математической статистики. Распределение вероятностей какой-либо случайной величины задается в простейшем случае указанием возможных значений этой величины и соответствующих им вероятностей, в более сложных — т. н. функцией распределения или плотностью вероятности.

Примеры распределений

  • Биномиальное распределение
  • Нормальное распределение
  • Равномерное распределение

Симуляция распределений

Рассмотрим следуйщий случай. Допустим, у нас есть чесная монета. А нам надо получить распределения с вероятностьями [math]1/3[/math]. Проведем слдующий эксперимент. Подкинем монету дважды. И если выпадет два раза орел - повторим эксперимент. По формуле условной вероятности (при условии, что как минимум одна монета выпала решкой)

[math]{p}(A \mid B) = [/math] [math] \frac{{p}(A\cap B)}{{p}(B)}[/math].

Предположим, что у нас есть последовательность экспериментов. Вероятность успеха [math]p = \frac{1}{4}[/math]. Вероятность неудачи [math]q = 1 - p = \frac{3}{4}[/math] Сколько экспериментов будет проведено до того, как будет достигнут успех? Пусть случайная величина [math]X[/math] равна количествуэкспериментов, необходимых для достижения успеха. Тогда [math]X[/math] принимает значения [math]\{1,2,...\}[/math] и для [math] k \ge 1 [/math]

[math]{p}(X = k) = q^{k-1}p,[/math]

поскольку перед наступлением успешного эксперимента было проведено [math] k - 1 [/math] неуспешных. Распределение вероятности, удовлетворяющее этому уравнению называется геометрическим распределением. Так как [math] q \lt 1 [/math] можно посчитать математическое ожидание геометрического распределения.

[math]E(X) = \sum\limits_{k = 0}^{\infty}kq^{k-1}p = \frac{p}{q}\sum\limits_{k = 0}^{\infty}kq^{k} = \frac{p}{q} \frac{q}{(1 - p)^{2}} = \frac{1}{p} =\frac{1}{\frac{1}{4}} = 4 [/math]

Док -во ОЛОЛО НУ ЯСНА Ж

См. также

БЛА БЛА БЛА СТАТЕЙКИ http://www.wikiznanie.ru/ru-wz/index.php/Категория:Теория_вероятностей

Литература

КНИЖКИ