Симуляция одним распределением другого — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Распределение)
Строка 1: Строка 1:
<wikitex>
+
 
 
==Распределение==
 
==Распределение==
[[Файл:Распределение1_4.JPG‎|200px|thumb|right|Геометрическое распределение с p = 3/4]]
 
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
'''Распределение вероятностей'''{{---}} закон, описывающий область значений случайной величины и вероятность их исхода. }}
+
'''Распределение вероятностей''' {{---}} закон, описывающий область значений случайной величины и вероятность их исхода. }}
 +
[[Файл:Распределение1_4.JPG‎|200px|thumb|right|Геометрическое распределение с p = 3/4]]
 +
 
 +
Законом распределения дискретной случайной величины <tex>\xi</tex> называется таблица:
 +
<tex>\xi: \begin{pmatrix}
 +
x_1 & x_2 & \ldots & x_n \\
 +
p_1 & p_2 & \ldots & p_n\end{pmatrix}, </tex>
  
Распределение вероятностей какой-либо случайной величины задается в простейшем случае указанием возможных значений этой величины и соответствующих им вероятностей, в более сложных — т. н. функцией распределения или плотностью вероятности.
+
где <tex>x_1 < x_2 < \ldots < x_n</tex> {{---}} всевозможные значения величины <tex>\xi,</tex> а <tex>p_i(i = 1, \ldots,
 +
n)</tex> {{---}} их вероятности, то есть <tex>p_i = P(\xi = x_i).</tex>
 +
 
 +
При этом должно выполняться равенство: <tex>p_1 + p_2 + \ldots + p_n = 1.</tex>
  
 
==Примеры распределений==
 
==Примеры распределений==
Строка 17: Строка 25:
 
Для того, чтобы создать необходимое распределение вероятностей, достаточно иметь последовательность независимых случайных величин типа "честной монеты".
 
Для того, чтобы создать необходимое распределение вероятностей, достаточно иметь последовательность независимых случайных величин типа "честной монеты".
 
Например, для создания схемы с двумя исходами $A_1$ и $A_2$:
 
Например, для создания схемы с двумя исходами $A_1$ и $A_2$:
<center>$P(A_1)=\frac{3}{4}$ $,$  $P(A_2)=\frac{1}{4}$</center>
+
$P(A_1)=\dfrac{3}{4}$ $,$  $P(A_2)=\dfrac{1}{4}$
 
можно из датчика случайных двоичных величин получить два  результата "честной монеты" $\delta_1$ и $\delta_2$  и, например, при $\delta_1 = \delta_2 = 1$  выработать исход $A_2$, а в остальных случаях $A_1$.
 
можно из датчика случайных двоичных величин получить два  результата "честной монеты" $\delta_1$ и $\delta_2$  и, например, при $\delta_1 = \delta_2 = 1$  выработать исход $A_2$, а в остальных случаях $A_1$.
 
Аналогично для схемы с четырьмя исходами
 
Аналогично для схемы с четырьмя исходами
<center>$P(A_1)=\frac{3}{16}$ $,$ $P(A_2)=\frac{1}{16}$ $,$ $P(A_3)=\frac{8}{16}$ $,$ $P(A_4)=\frac{4}{16}$</center>
+
$P(A_1)=\dfrac{3}{16}$ $,$ $P(A_2)=\dfrac{1}{16}$ $,$ $P(A_3)=\dfrac{8}{16}$ $,$ $P(A_4)=\dfrac{4}{16}$
 
можно получить четыре результата "честной монеты" $\delta_1$ $,$ $\delta_2$ $,$ $\delta_3$ $,$ $\delta_4$ и любым способом сопоставить трём из 16 возможных наборов исход $A_1$, одному $-$ $A_2$, восьми $-$ $A_3$, четырём $-$ $A_4$.
 
можно получить четыре результата "честной монеты" $\delta_1$ $,$ $\delta_2$ $,$ $\delta_3$ $,$ $\delta_4$ и любым способом сопоставить трём из 16 возможных наборов исход $A_1$, одному $-$ $A_2$, восьми $-$ $A_3$, четырём $-$ $A_4$.
 
Если же вероятности исходов не кратны $2^{-k}$, можно применить два различных варианта действий.
 
Если же вероятности исходов не кратны $2^{-k}$, можно применить два различных варианта действий.
Строка 26: Строка 34:
 
:#Пусть все вероятности $n_i$ $-$ дроби со знаменателем $r$. Найдём $k$, для которого $r < 2^k$. Предложим схему с $k$ результатами "честной монеты", в которой $r$ наборов используются для выработки случайного исхода, а остальные $2^{k}-r$ наборов объявляются "неудачными" и требуют повторного эксперимента (пока не встретится удачный). Чем выше доля полезных исходов равная  $r2^{-k}$, тем схема будет эффективнее.
 
:#Пусть все вероятности $n_i$ $-$ дроби со знаменателем $r$. Найдём $k$, для которого $r < 2^k$. Предложим схему с $k$ результатами "честной монеты", в которой $r$ наборов используются для выработки случайного исхода, а остальные $2^{k}-r$ наборов объявляются "неудачными" и требуют повторного эксперимента (пока не встретится удачный). Чем выше доля полезных исходов равная  $r2^{-k}$, тем схема будет эффективнее.
 
Количество результатов "честной монеты" $\lambda$, которые необходимы для формирования случайного исхода, $-$  это случайная величина. Её математическое ожидание:
 
Количество результатов "честной монеты" $\lambda$, которые необходимы для формирования случайного исхода, $-$  это случайная величина. Её математическое ожидание:
<center>$E\lambda = \frac{1}{2}\cdot1+\frac{1}{4}\cdot2+\frac{1}{8}\cdot3+\frac{1}{16}\cdot3+\frac{1}{16}\cdot4 = 1\frac{7}{8}$</center>
+
$E\lambda = \dfrac{1}{2}\cdot1+\dfrac{1}{4}\cdot2+\dfrac{1}{8}\cdot3+\dfrac{1}{16}\cdot3+\dfrac{1}{16}\cdot4 = 1\dfrac{7}{8}$
Можно сделать схему более экономной, используя свойство датчика случайных чисел формировать не отдельные результаты "честной монеты", а целые наборы их, например в виде числа, равномерно распределённого в $[0, 1]$. Образуем по данному набору вероятностей $p_i$ накопленные суммы $s_i$: $s_0 = 0; s_i = s_{i-1} + p_i, i > 0$. Случайный исход будет вырабатываться так: по полученному из датчика случайному числу $\gamma$ определяется такой индекс $i$, для которого $s_{i-1} < \gamma \le s_i$. Найденное значение индекса $i$ и определяет исход $A_i$.
+
Можно сделать схему более экономной, используя свойство датчика случайных чисел формировать не отдельные результаты "честной монеты", а целые наборы их, например в виде числа, равномерно распределённого в $[0, 1]$. Образуем по данному набору вероятностей $p_i$ накопленные суммы $s_i$: $s_0 = 0; s_i = s_{i-1} + p_i, i > 0$. Случайный исход будет вырабатываться так: по полученному из датчика случайному числу $\gamma$ определяется такой индекс $i$, для которого $s_{i-1} < \gamma \leqslant s_i$. Найденное значение индекса $i$ и определяет исход $A_i$.
  
 
Индекс $i$ можно определять непосредственно просмотром $s_i$ подряд. Если $k$ велико, можно применять специальные приёмы ускоренного поиска, например, деление множества индексов примерно пополам.
 
Индекс $i$ можно определять непосредственно просмотром $s_i$ подряд. Если $k$ велико, можно применять специальные приёмы ускоренного поиска, например, деление множества индексов примерно пополам.
Строка 35: Строка 43:
 
Допустим у нас есть распределение <tex>p.</tex> Нам нужно получить распределение <tex>q</tex>.
 
Допустим у нас есть распределение <tex>p.</tex> Нам нужно получить распределение <tex>q</tex>.
  
Для начала рассмотрим случай, когда все <tex>p_i = \frac{1}{k},</tex> а в распределении <tex>q </tex>  количество элементарных исходов равно <tex>2.</tex>  
+
Для начала рассмотрим случай, когда все <tex>p_i = \dfrac{1}{k},</tex> а в распределении <tex>q </tex>  количество элементарных исходов равно <tex>2.</tex>  
Проводим эксперимент: если попадаем в область пересекающуюся с <tex> q_1 </tex> и <tex> q_2,</tex> то увеличиваем ее и повторяем эксперимент. На рисунке слева красным обозначенно распределение <tex> q. </tex> Вероятность того, что на этом шаге эксперимент не закончится {{---}} <tex>\frac{1}{k}.</tex> Математическое ожидание количества экспериментов {{---}} <tex> \frac{k}{k-1}, max(\frac{k}{k-1}) = 2 (</tex>при <tex>k = 2) </tex>
+
Проводим эксперимент: если попадаем в область пересекающуюся с <tex> q_1 </tex> и <tex> q_2,</tex> то увеличиваем ее и повторяем эксперимент. На рисунке слева красным обозначенно распределение <tex> q. </tex> Вероятность того, что на этом шаге эксперимент не закончится {{---}} <tex>\dfrac{1}{k}.</tex> Математическое ожидание количества экспериментов {{---}} <tex> \dfrac{k}{k-1}, max(\dfrac{k}{k-1}) = 2 (</tex>при <tex>k = 2) </tex>
  
 
[[Файл:Sim pic2.JPG‎|170px|right|thumb|Количество элементарных исходов распределения q равно n]]
 
[[Файл:Sim pic2.JPG‎|170px|right|thumb|Количество элементарных исходов распределения q равно n]]
Теперь рассмотрим случай, когда все элементарные исходы <tex>p_i</tex> по-прежнему равновероятны <tex>(p_i = \frac{1}{k}),</tex>а количество элементарных исходов распределения <tex>q</tex> равно <tex>n (\sum\limits_{j=1}^{n}q_j = 1).</tex> Повторим эксперимент <tex> t </tex> раз.
+
Теперь рассмотрим случай, когда все элементарные исходы <tex>p_i</tex> по-прежнему равновероятны <tex>(p_i = \dfrac{1}{k}),</tex>а количество элементарных исходов распределения <tex>q</tex> равно <tex>n (\sum\limits_{j=1}^{n}q_j = 1).</tex> Повторим эксперимент <tex> t </tex> раз.
  
<tex> k^t \ge 2n, t \ge \log\limits_{k}2n </tex>  
+
<tex> k^t \geqslant 2n, t \geqslant \log\limits_{k}2n </tex>  
  
 
Отрезок разбился на <tex> k^t </tex> отрезков. Стык будет не более, чем в половине отрезков. Математическое ожидание количества экспериментов <tex> \approx 2t </tex>
 
Отрезок разбился на <tex> k^t </tex> отрезков. Стык будет не более, чем в половине отрезков. Математическое ожидание количества экспериментов <tex> \approx 2t </tex>
Строка 50: Строка 58:
 
<tex>q_j, \sum\limits_{j}q_j = 1</tex>
 
<tex>q_j, \sum\limits_{j}q_j = 1</tex>
  
Берем <tex>p_i</tex>, и пусть оно максимальной длины. Проводим <tex>t</tex> экспериментов. <tex>{p_i}^t < \frac{1}{2n}, </tex> все остальные еще меньше. Суммарная длина отрезков не больше <tex>\frac{1}{2}.</tex> Нужно <tex> t \ge \log\limits_{p}\frac{1}{2n} </tex>  
+
Берем <tex>p_i</tex>, и пусть оно максимальной длины. Проводим <tex>t</tex> экспериментов. <tex>{p_i}^t < \dfrac{1}{2n}, </tex> все остальные еще меньше. Суммарная длина отрезков не больше <tex>\dfrac{1}{2}.</tex> Нужно <tex> t \geqslant \log\limits_{p}\dfrac{1}{2n} </tex>  
  
  
 +
Таким образом, из любого исходного распределения можно получить нужное нам распределение.
  
Вывод: из любого исходного распределения можно получить любое нужное нам распределение.
 
</wikitex>
 
 
==См. также==  
 
==См. также==  
 
*[[Условная вероятность]]
 
*[[Условная вероятность]]
Строка 62: Строка 69:
  
 
==Литература==
 
==Литература==
*Боровков А.А. Математическая статистика: оценка параметров, проверка гипотез. - М., Физматлит, 1984.
+
*Боровков А.А. Математическая статистика: оценка параметров, проверка гипотез. {{---}} М., Физматлит, 1984, {{---}} стр. 71.
*[http://sheen.me/books/spec/apia.djvu Т. Кормен, Ч. Лейзерсон, Р. Ривест, К. Штайн - Алгоритмы. Построение и анализ 1244c.]
+
*[http://sheen.me/books/spec/apia.djvu Т. Кормен, Ч. Лейзерсон, Р. Ривест, К. Штайн {{---}} Алгоритмы. Построение и анализ {{---}} М. : ООО "И. Д. Вильямс", 2013. {{---}} 1328 с. {{---}} стр. 1254.]
*Романовский И.В. Дискретный анализ
+
*Романовский И. В. {{---}} Элементы теории вероятностей и математической статистики (теория и задачи): учебное пособие. {{---}} Омск, издатель ИП Скорнякова Е.В., 2012. {{---}} 189 с. {{---}} стр. 34.
 +
 
  
 
[[Категория:Дискретная математика и алгоритмы]]
 
[[Категория:Дискретная математика и алгоритмы]]
  
 
[[Категория: Теория вероятности ]]
 
[[Категория: Теория вероятности ]]

Версия 22:10, 10 марта 2018

Распределение

Определение:
Распределение вероятностей — закон, описывающий область значений случайной величины и вероятность их исхода.
Геометрическое распределение с p = 3/4

Законом распределения дискретной случайной величины [math]\xi[/math] называется таблица: [math]\xi: \begin{pmatrix} x_1 & x_2 & \ldots & x_n \\ p_1 & p_2 & \ldots & p_n\end{pmatrix}, [/math]

где [math]x_1 \lt x_2 \lt \ldots \lt x_n[/math] — всевозможные значения величины [math]\xi,[/math] а [math]p_i(i = 1, \ldots, n)[/math] — их вероятности, то есть [math]p_i = P(\xi = x_i).[/math]

При этом должно выполняться равенство: [math]p_1 + p_2 + \ldots + p_n = 1.[/math]

Примеры распределений

  • Биномиальное распределение
  • Нормальное распределение
  • Равномерное распределение


Симуляция распределений

Для того, чтобы создать необходимое распределение вероятностей, достаточно иметь последовательность независимых случайных величин типа "честной монеты". Например, для создания схемы с двумя исходами $A_1$ и $A_2$: $P(A_1)=\dfrac{3}{4}$ $,$ $P(A_2)=\dfrac{1}{4}$ можно из датчика случайных двоичных величин получить два результата "честной монеты" $\delta_1$ и $\delta_2$ и, например, при $\delta_1 = \delta_2 = 1$ выработать исход $A_2$, а в остальных случаях $A_1$. Аналогично для схемы с четырьмя исходами $P(A_1)=\dfrac{3}{16}$ $,$ $P(A_2)=\dfrac{1}{16}$ $,$ $P(A_3)=\dfrac{8}{16}$ $,$ $P(A_4)=\dfrac{4}{16}$ можно получить четыре результата "честной монеты" $\delta_1$ $,$ $\delta_2$ $,$ $\delta_3$ $,$ $\delta_4$ и любым способом сопоставить трём из 16 возможных наборов исход $A_1$, одному $-$ $A_2$, восьми $-$ $A_3$, четырём $-$ $A_4$. Если же вероятности исходов не кратны $2^{-k}$, можно применить два различных варианта действий.

  1. Можно приблизить вероятности двоичными дробями (с любой точностью), далее работать с полученными приближёнными значениями
  2. Пусть все вероятности $n_i$ $-$ дроби со знаменателем $r$. Найдём $k$, для которого $r < 2^k$. Предложим схему с $k$ результатами "честной монеты", в которой $r$ наборов используются для выработки случайного исхода, а остальные $2^{k}-r$ наборов объявляются "неудачными" и требуют повторного эксперимента (пока не встретится удачный). Чем выше доля полезных исходов равная $r2^{-k}$, тем схема будет эффективнее.

Количество результатов "честной монеты" $\lambda$, которые необходимы для формирования случайного исхода, $-$ это случайная величина. Её математическое ожидание: $E\lambda = \dfrac{1}{2}\cdot1+\dfrac{1}{4}\cdot2+\dfrac{1}{8}\cdot3+\dfrac{1}{16}\cdot3+\dfrac{1}{16}\cdot4 = 1\dfrac{7}{8}$ Можно сделать схему более экономной, используя свойство датчика случайных чисел формировать не отдельные результаты "честной монеты", а целые наборы их, например в виде числа, равномерно распределённого в $[0, 1]$. Образуем по данному набору вероятностей $p_i$ накопленные суммы $s_i$: $s_0 = 0; s_i = s_{i-1} + p_i, i > 0$. Случайный исход будет вырабатываться так: по полученному из датчика случайному числу $\gamma$ определяется такой индекс $i$, для которого $s_{i-1} < \gamma \leqslant s_i$. Найденное значение индекса $i$ и определяет исход $A_i$.

Индекс $i$ можно определять непосредственно просмотром $s_i$ подряд. Если $k$ велико, можно применять специальные приёмы ускоренного поиска, например, деление множества индексов примерно пополам.

Общий случай

В распределении q количество элементарных исходов равно 2

Допустим у нас есть распределение [math]p.[/math] Нам нужно получить распределение [math]q[/math].

Для начала рассмотрим случай, когда все [math]p_i = \dfrac{1}{k},[/math] а в распределении [math]q [/math] количество элементарных исходов равно [math]2.[/math] Проводим эксперимент: если попадаем в область пересекающуюся с [math] q_1 [/math] и [math] q_2,[/math] то увеличиваем ее и повторяем эксперимент. На рисунке слева красным обозначенно распределение [math] q. [/math] Вероятность того, что на этом шаге эксперимент не закончится — [math]\dfrac{1}{k}.[/math] Математическое ожидание количества экспериментов — [math] \dfrac{k}{k-1}, max(\dfrac{k}{k-1}) = 2 ([/math]при [math]k = 2) [/math]

Количество элементарных исходов распределения q равно n

Теперь рассмотрим случай, когда все элементарные исходы [math]p_i[/math] по-прежнему равновероятны [math](p_i = \dfrac{1}{k}),[/math]а количество элементарных исходов распределения [math]q[/math] равно [math]n (\sum\limits_{j=1}^{n}q_j = 1).[/math] Повторим эксперимент [math] t [/math] раз.

[math] k^t \geqslant 2n, t \geqslant \log\limits_{k}2n [/math]

Отрезок разбился на [math] k^t [/math] отрезков. Стык будет не более, чем в половине отрезков. Математическое ожидание количества экспериментов [math] \approx 2t [/math]

Sim pic3.JPG

[math]p_i, \sum\limits_{i}p_i = 1,[/math]

[math]q_j, \sum\limits_{j}q_j = 1[/math]

Берем [math]p_i[/math], и пусть оно максимальной длины. Проводим [math]t[/math] экспериментов. [math]{p_i}^t \lt \dfrac{1}{2n}, [/math] все остальные еще меньше. Суммарная длина отрезков не больше [math]\dfrac{1}{2}.[/math] Нужно [math] t \geqslant \log\limits_{p}\dfrac{1}{2n} [/math]


Таким образом, из любого исходного распределения можно получить нужное нам распределение.

См. также

Литература