Симуляция одним распределением другого — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Симуляция распределений)
Строка 8: Строка 8:
  
 
==Симуляция распределений==
 
==Симуляция распределений==
Рассмотрим следуйщий случай. Допустим, у нас есть чесная монета. А нам надо получить распределения с вероятностьями <tex>1/3</tex>. Проведем слдующий эксперимент. Подкинем монету дважды. И если выпадет два раза орел - эксперимент не удался, повторим его.
+
Рассмотрим следующий случай. Допустим, у нас есть честная монета. А нам надо получить распределения с вероятностями <tex>1/3</tex>. Проведем селдующий эксперимент. Подкинем монету дважды. И если выпадет два раза орел - эксперимент не удался, повторим его.
 
Предположим, что у нас есть последовательность экспериментов. Вероятность успеха  <tex dpi = "140">p = \frac{3}{4}</tex>. Вероятность неудачи <tex dpi = "140">q = 1 - p = \frac{1}{4}</tex> Сколько экспериментов будет проведено до того, как будет достигнут успех? Пусть случайная величина <tex>X</tex> равна количествуэкспериментов, необходимых для достижения успеха. Тогда <tex>X</tex> принимает значения <tex>\{1,2,...\}</tex> и для <tex> k \ge 1 </tex>
 
Предположим, что у нас есть последовательность экспериментов. Вероятность успеха  <tex dpi = "140">p = \frac{3}{4}</tex>. Вероятность неудачи <tex dpi = "140">q = 1 - p = \frac{1}{4}</tex> Сколько экспериментов будет проведено до того, как будет достигнут успех? Пусть случайная величина <tex>X</tex> равна количествуэкспериментов, необходимых для достижения успеха. Тогда <tex>X</tex> принимает значения <tex>\{1,2,...\}</tex> и для <tex> k \ge 1 </tex>
 
: <tex dpi = "140">{p}(X = k) = q^{k-1}p,</tex>
 
: <tex dpi = "140">{p}(X = k) = q^{k-1}p,</tex>

Версия 09:39, 15 января 2011

Распределение

Распределение — одно из основных понятий теории вероятностей и математической статистики. Распределение вероятностей какой-либо случайной величины задается в простейшем случае указанием возможных значений этой величины и соответствующих им вероятностей, в более сложных — т. н. функцией распределения или плотностью вероятности.

Примеры распределений

  • Биномиальное распределение
  • Нормальное распределение
  • Равномерное распределение

Симуляция распределений

Рассмотрим следующий случай. Допустим, у нас есть честная монета. А нам надо получить распределения с вероятностями [math]1/3[/math]. Проведем селдующий эксперимент. Подкинем монету дважды. И если выпадет два раза орел - эксперимент не удался, повторим его. Предположим, что у нас есть последовательность экспериментов. Вероятность успеха [math]p = \frac{3}{4}[/math]. Вероятность неудачи [math]q = 1 - p = \frac{1}{4}[/math] Сколько экспериментов будет проведено до того, как будет достигнут успех? Пусть случайная величина [math]X[/math] равна количествуэкспериментов, необходимых для достижения успеха. Тогда [math]X[/math] принимает значения [math]\{1,2,...\}[/math] и для [math] k \ge 1 [/math]

[math]{p}(X = k) = q^{k-1}p,[/math]

поскольку перед наступлением успешного эксперимента было проведено [math] k - 1 [/math] неуспешных. Распределение вероятности, удовлетворяющее этому уравнению называется геометрическим распределением. Так как [math] q \lt 1 [/math] можно посчитать математическое ожидание геометрического распределения.

[math]E(X) = \sum\limits_{k = 0}^{\infty}kq^{k-1}p = \frac{p}{q}\sum\limits_{k = 0}^{\infty}kq^{k} = \frac{p}{q} \frac{q}{(1 - q)^{2}} = \frac{1}{p} =\frac{1}{\frac{3}{4}} = \frac{4}{3}. [/math]

Дисперсия вычисляется аналогично.

[math]D(X) = \frac{q}{p^{2}} = \frac{4}{9} [/math]

См. также

Литература