Редактирование: Сингулярное разложение

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 4: Строка 4:
 
|author=Сингулярное разложение
 
|author=Сингулярное разложение
 
|statement=
 
|statement=
У любой матрицы <tex> A </tex> размера <tex> n \times m </tex> существует разложение на матрицы <tex> U, \Sigma, V^T </tex>: <tex> A_{n \times m} = U_{n \times n} \times \Sigma_{n \times m} \times V^T_{m \times m} </tex>.
+
У любой матрицы <tex> A </tex> размера <tex> n \times m </tex> существует разложение на матрицы <tex> U, \Sigma, V^T </tex>: <tex> A_{n \times m} = U_{n \times n} \times \Sigma_{n \times m} \times V^T_{m \times m} </tex>.<br/>
При этом, матрицы <tex>U_{n \times n}</tex> и <tex>V_{m \times m}</tex> являются ортогональными, а матрица <tex>\Sigma_{n \times m} </tex> {{---}} диагональной.
+
<tex>\mathrm{P} \neq \mathrm{NP} \Rightarrow \mathrm{NP} \setminus (\mathrm{P} \cup \mathrm{NPC}) \neq \varnothing</tex>.
 +
}}
 +
{{Определение
 +
|definition=
 +
'''SVD''' (англ. ''Singular Value Decomposition'') {{---}} у любой матрицы <tex> A </tex> размера <tex> n \times m </tex> существует разложение на матрицы <tex> U, \Sigma, V^T </tex>: <tex> A_{n \times m} = U_{n \times n} \times \Sigma_{n \times m} \times V^T_{m \times m} </tex>.<br/>
 
}}
 
}}
 +
  
 
== Свойства ==
 
== Свойства ==
  
Пусть дана матрица <tex> F_{n \times m} </tex>. Тогда <tex> F </tex> можно представить в следующем виде:
+
Пусть <tex> F </tex> — <tex> l \times n </tex> матрица. Тогда <tex> F </tex> можно представить в следующем виде:
  
<tex> F_{n \times m} = U_{n \times n} \times \Sigma_{n \times m} \times V^T_{m \times m} </tex>.
+
<tex> F = V D U^T </tex>.
  
 
Основные свойства сингулярного разложения:
 
Основные свойства сингулярного разложения:
  
* <tex> n \times n </tex>-матрица <tex> U = (v_1, \dots, v_n) </tex> ортогональна, <tex> V^T V = I_n </tex>,столбцы <tex> v_j </tex> — собственные векторы матрицы <tex> F F^T </tex>;
+
* <tex> l \times n </tex>-матрица <tex> V = (v_1, \dots, v_n) </tex> ортогональна, <tex> V^T V = I_n </tex>, <br> столбцы <tex> v_j </tex> — собственные векторы матрицы <tex> F F^T </tex>;
* <tex> m \times m </tex>-матрица <tex> V = (u_1, \dots, u_m) </tex> ортогональна, <tex> U^T U = I_m </tex>,столбцы <tex> u_j </tex> — собственные векторы матриц <tex> F^T F </tex>;
+
* <tex> n \times n </tex>-матрица <tex> U = (u_1, \dots, u_n) </tex> ортогональна, <tex> U^T U = I_n </tex>, <br> столбцы <tex> u_j </tex> — собственные векторы матриц <tex> F^T F </tex>;
* <tex> n \times m </tex>-матрица <tex> \Sigma_{n \times m}  </tex> {{---}} диагональная, <tex> \Sigma_{n \times m} = diag(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n}) </tex>, <tex> \lambda_j \geq 0 </tex> — собственные значения матриц <tex> F^T F </tex> и <tex> F F^T </tex>, <br> <tex> \sqrt{ \lambda_j } </tex> — сингулярные числа матрицы <tex> F </tex>.
+
* <tex> n \times n </tex>-матрица <tex> D </tex> диагональна, <tex> D = diag(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n}) </tex>, <br> <tex> \lambda_j \geq 0 </tex> — собственные значения матриц <tex> F^T F </tex> и <tex> F F^T </tex>, <br> <tex> \sqrt{ \lambda_j } </tex> — сингулярные числа матрицы <tex> F </tex>.
 
 
 
 
Матрицы <tex> U, V </tex> ортогональные, <tex> \Sigma </tex> {{---}} диагональная:
 
<tex> UU^T = I_n</tex>,<tex>VV^T = I_m</tex>, <tex> \Sigma = diag(\lambda_1,\dots,\lambda_{min(n, m)})</tex>, <tex>\lambda_1 \geq \dots \geq \lambda_{min(n, m)} \geq 0 </tex> .
 
 
 
=== Усеченное разложение ===
 
Усеченное разложение  {{---}} когда из лямбд, остаются только первые <tex> d </tex> чисел, а остальные полагаются равными нулю.
 
 
 
<tex> \lambda_{d+1},\dots,\lambda_{min(n,m)} = 0 </tex>
 
 
 
Значит у матриц <tex> U </tex> и <tex> V </tex> остаются только первые <tex> d </tex> столбцов, а матрица <tex> \Sigma </tex> становится квадратной размером <tex> d \times d </tex>.
 
 
 
<tex> A'_{n \times m} = U'_{n \times d} \times \Sigma'_{d \times d} \times V'^T_{d \times m} </tex>.
 
 
 
Полученная матрица <tex> A'</tex> хорошо приближает исходную матрицу <tex> A</tex>. Более того, является наилучшим низкоранговым приближением с точки зрения средне-квадратичного отклонения.
 

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: