Изменения

Перейти к: навигация, поиск
Оценка времени работы для OneMax
Путем несложных преобразований получаем: <tex> (\frac {1} {1 + \frac{1}{n}})^n = (\frac {1} {\frac{n + 1}{n}})^n = (\frac {n} {n+1})^n \stackrel{ _{m = n + 1}}{=}
(1 - \frac{1}{m}) ^ {m-1}</tex>. Чтобы перейти от предела к неравенству, докажем, что <tex>(1 + \frac{1}{n})^n \leq e</tex>. Известно, что <tex>1 + x \leq e^x</tex>. Пусть <tex>x = \frac{1}{n}</tex>, тогда <tex>1 + \frac{1}{n} \leq e^{\frac{1}{n}}</tex>. Возведем обе части в степень <tex>n</tex> и получим требуемое неравенство. }}
{{Утверждение
Анонимный участник

Навигация