Изменения

Перейти к: навигация, поиск

Список заданий по ДМ

3293 байта добавлено, 15:31, 12 декабря 2013
Нет описания правки
# Приведите пример бесконечного вероятностного простанства
# Можно ли конструкцию с произведением вероятностных пространств распространить на бесконечное множество пространств?
# Найдите математическое ожидание и дисперсию значения на нечестной монете
# Найдите математическое ожидание и дисперсию значения на честной игральной кости
# Найдите распределение, математическое ожидание и дисперсию следующей случайной величины: число бросков честной монеты до первого выпадения 1.
# Докажите, что если $f$ и $g$ независимы, то для любых $a$ и $b$ события $[f = a]$ и $[g = b]$ независимы
# Докажите, что если f и g независимы, то $D(f + g) = Df + Dg$
# Докажите, что корреляция случайных величин лежит в диапазоне от -1 до 1
# Докажите или опровергните, что корреляция случайных величин равна 0 тогда и только тогда, когда они независимы
# Докажите, что корреляция случайных величин равна 1 тогда и только тогда, когда они линейно зависимы $(f = cg)$ и $c > 0$ (если $c < 0$, то корелляция равно -1)
# Случайные величины f, g и h называются независимыми в совокупности, если для любых a, b и c события [f <= a], [g <= b] и [h <= c] независимы. Приведите пример независимых попарно, но не независимых в совокупности случайных величин
# Найдите математическое ожидание числа инверсий в перестановке чисел от 1 до $n$
# Найдите математическое ожидание числа подъемов в перестановке чисел от 1 до $n$
# Предложите метод генерации случайной перестановки порядка $n$ с равновероятным распределением всех перестановок, если мы умеем генерировать равномерно распределенное целое число от 1 до $k$ для любых небольших $k$ ($k = O(n)$).
# Дает ли следующий метод равномерную генерацию всех перестановок? "p = [1, 2, ..., n]; for i from 1 to n: swap(p[i], p[random(1..n)] )"
# Дает ли следующий метод равномерную генерацию всех перестановок? "p = [1, 2, ..., n]; for i from 1 to n: swap(p[random(1..n)], p[random(1..n)] )"
# Предложите метод генерации случайного сочетания из $n$ по $k$ с равновероятным распределением всех сочетаний, если мы умеем генерировать равномерно распределенное целое число от 1 до $t$ для любых небольших $t$ ($t = O(n)$)
</wikitex>
Анонимный участник

Навигация