17
правок
Изменения
Нет описания правки
[[Файл:ATG_part1.jpg|200px|right]]
Необходимость. Пусть в <tex>G</tex> <tex>\exists</tex> цикл <tex>C, v \notin C</tex>.<br>
Рассмотрим <tex>G_1 = G/C</tex> (здесь и далее это означает удаление только ребер, не трогая вершины). При удалении цикла все степени вершин остались четными, потому что каждая вершина содержит четное количество ребер цикла, и следовательно <tex>G_1</tex> {{---}} эйлеров, так как при удалении цикла все степени вершин остались четными. Значит Тогда в <tex>G_1</tex> <tex>\exists</tex> эйлеров цикл. Если начать обход по эйлерову циклу из <tex>v</tex>, то и закончится он в <tex>v</tex>. Если теперь вернуть цикл <tex>C</tex>, то мы никак не сможем его обойти , так как из вершины <tex>v</tex> больше нет не посещенных ребер <tex>\Rightarrow</tex> <tex>G</tex> не свободно вычерчиваемый из <tex>v</tex>.
[[Файл:ATG_part2.jpg|200px|left]]
Достаточность. Пусть дан эйлеров граф <tex>G</tex>, вершина <tex>v</tex> принадлежит всем его циклам.<br>
Рассмотрим произвольный путь <tex>P = (v,w)</tex>. Пусть <tex>G_1 = G/P</tex>. Возможно Возможны 2 случая:
1. если <tex>v = w</tex>, то <tex>P</tex> {{---}} цикл, значит степени всех вершин в <tex>G_1</tex> остались четными <tex>\Rightarrow</tex> <tex>G_1</tex> {{---}} эйлеров.<br>
Покажем, что в обоих случаях эйлеров обход пройдет по всем ребрам <tex>G_1</tex>.
В <tex>G</tex> <tex>\exists</tex> единственная компонента связности, содержащая ребра. При удалении <tex>P</tex> их количество не могло увеличится, иначе должен быть цикл, не содержащий <tex>v</tex>(смотри рисунок). Значит в <tex>G_1</tex> <tex>\exists</tex> единственная компонента связности содержащая ребра, причем <tex>G_1</tex> хотя бы либо полуэйлеров , либо эйлеров <tex>\Rightarrow</tex> в <tex>G_1</tex> <tex>\exists</tex> эйлерова цепь <tex>Q = (w,v)</tex> <tex>\Rightarrow</tex> <tex>P+Q</tex> эйлеров цикл в графе <tex>G</tex>.
}}