Изменения

Перейти к: навигация, поиск

Участник:Artem.ustinov/НВП

26 байт убрано, 02:54, 7 января 2018
Оценка времени работы
Рассмотрим последовательность <tex>\{m_0,~m_1,~m_2,~\dots\}</tex>, где <tex> m_{i+1} = m_i ^{\operatorname{log}m_i} = 2^{\operatorname{log}^2m_i}</tex>, <tex>m_0</tex> — некоторое значение, меньшее <tex>k</tex>.
Будем по порядку последовательно для элементов этой последовательности запускать алгоритм, представленный выше. Если размер очереди <tex>B</tex> становится больше <tex>m_i</tex>, то условие <tex>m \geqslant k</tex> перестает выполняться, тогда останавливаем алгоритм и переходим к следующему значению <tex>m_{i+1}</tex>. Когда найдётся первое <tex>m_j:m_j\geqslant k</tex>, то алгоритм успешно завершится.
Таким образом, время работы запущенного алгоритма для каждого <tex>m_i</tex> — <tex>O(n \log \log {m_i})</tex> для . Когда найдётся первое <tex>0\leqslant i m_j:m_j\leqslant jgeqslant k</tex>, то алгоритм успешно завершится.
Заметим, что  <tex>\operatorname{log}\operatorname{log}m_{i+1} = \operatorname{log}\operatorname{log}2^{\operatorname{log}^2m_i} = \operatorname{log}\operatorname{log}^2m_i = 2\operatorname{log}\operatorname{log}m_i</tex>.
<tex>\operatorname{log}\operatorname{log}m_j = 2^{j-i}\operatorname{log}\operatorname{log}m_i</tex>
Общее время работы алгоритма по всем для всех обработанных значений <tex>m_i</tex> — <tex>O(n(\sum_{i=0}\limits^{j}{2^{-(i-1)}})\log \log m_i)</tex>. Обратим вниманиеЗаметим, что <tex>m_i < k^{\operatorname{log}k}</tex>, так как в противном случае <tex>m_{i-1} > k</tex>, что противоречит тому, что <tex>m_i</tex> — первый из тех, которые больше <tex>k</tex>. Следовательно, <tex>\operatorname{log}\operatorname{log}m_i < 2\operatorname{log}\operatorname{log}k \</tex>.
Тогда алгоритм также работает за Получаем время работы <tex>O(n\operatorname{log}\operatorname{log}k)</tex>.
== См. также ==
76
правок

Навигация