Изменения

Перейти к: навигация, поиск

Обсуждение участника:MetaMockery

3157 байт добавлено, 17:14, 24 декабря 2020
Различные свойства функции Эйлера
}}
:
 
{{Теорема
|about = Обобщённая мультипликативность
 
|statement = Пусть <math>n</math> и <math>m</math> {{---}} любые два натуральных числа, а <math>d = GCD(n,\ m)</math>, тогда:
: <math>\varphi(m \cdot n) = \varphi(m) \cdot \varphi(n)\cdot\frac{d}{\varphi(d)},</math>
 
|proof =
 
Пусть <math>(m,\,n)=d,</math> тогда <math>m = m'd, \; n = n'd,</math> причем в общем случае <math>(m',\,d) \neq 1</math> и <math>(n',\,d) \neq 1.</math> Поэтому можно записать:
:<math>d = d_1^{\delta_1} \cdot\ldots\cdot d_k^{\delta_k} \cdot d_{k+1}^{\delta_{k+1}} \cdot\ldots\cdot d_{K}^{\delta_{K}},</math>
:<math>m' = d_1^{\alpha_1} \cdot\ldots\cdot d_k^{\alpha_k} \cdot p_1^{\beta_1} \cdot\ldots\cdot p_r^{\beta_r},</math>
:<math>n' = d_{k+1}^{\gamma_{k+1}} \cdot\ldots\cdot d_{K}^{\gamma_{K}} \cdot q_1^{\varepsilon_1} \cdot\ldots\cdot q_s^{\varepsilon_s}.</math>
Здесь первые <math>k</math> делителей <math>d</math> являются также делителями <math>m',</math> а последние <math>K-k</math> делителей <math>d</math> являются делителями <math>n'.</math> Распишем:
:<math>\varphi(mn)= \varphi(d^2 \cdot m'n')
= \varphi((d_1^{\delta_1} \cdot\ldots\cdot d_k^{\delta_k} \cdot d_{k+1}^{\delta_{k+1}} \cdot\ldots\cdot d_{K}^{\delta_{K}})^2 \cdot d_1^{\alpha_1} \cdot\ldots\cdot d_k^{\alpha_k} \cdot p_1^{\beta_1} \cdot\ldots\cdot p_r^{\beta_r} \cdot d_{k+1}^{\gamma_{k+1}} \cdot\ldots\cdot d_{K}^{\gamma_{K}} \cdot q_1^{\varepsilon_1} \cdot\ldots\cdot q_s^{\varepsilon_s}).</math>
В силу мультипликативности функции Эйлера, а также с учётом формулы
:<math>\varphi(p^n) = p^n(1-\frac{1}{p}),</math>
где <math>p</math> — простое, получаем:
:<math>
\begin{align}
\varphi(mn)
 
&= d_1^{\alpha_1+\delta_1}\left(1-\frac{1}{d_1}\right) \cdot\ldots\cdot d_k^{\alpha_k+\delta_k}\left(1-\frac{1}{d_k}\right) \cdot p_1^{\beta_1}\left(1-\frac{1}{p_1}\right) \cdot\ldots\cdot p_r^{\beta_r}\left(1-\frac{1}{p_r}\right) \cdot d_{k+1}^{\delta_{k+1}}\left(1-\frac{1}{d_{k+1}}\right) \cdot\ldots\cdot d_{K}^{\delta_{K}}\left(1-\frac{1}{d_{K}}\right)\times \\
 
&\; \times \; d_{k+1}^{\gamma_{k+1}+\delta_{k+1}}\left(1-\frac{1}{d_{k+1}}\right) \cdot\ldots\cdot d_{K}^{\gamma_{K}+\delta_{K}}\left(1-\frac{1}{d_{K}}\right) \cdot q_1^{\varepsilon_1}\left(1-\frac{1}{q_1}\right) \cdot\ldots\cdot q_s^{\varepsilon_s}\left(1-\frac{1}{q_s}\right) \cdot d_1^{\delta_1}\left(1-\frac{1}{d_1}\right) \cdot\ldots\cdot d_{k+1}^{\delta_{k+1}}\left(1-\frac{1}{d_{k+1}}\right)\times \\
 
&\; \times \; \frac{1}{\left(1-\frac{1}{d_1}\right) \cdot\ldots\cdot \left(1-\frac{1}{d_K}\right)}.
\end{align}
</math>
В первой строке записано <math>\varphi(m),</math> во второй — <math>\varphi(n),</math> а третью можно представить, как <math>\frac{d}{\varphi(d)}.</math> Поэтому:
:<math>\varphi(m \cdot n) = \varphi(m) \cdot \varphi(n) \cdot \frac{d}{\varphi(d)}.</math>
 
}}
== Применение теоремы Эйлера в других задачах ==
69
правок

Навигация