Изменения

Перейти к: навигация, поиск

Теорема Брукса

92 байта убрано, 22:19, 19 января 2013
Теорема
|proof=
Для доказательства теоремы рассмотрим несколько случаев:#<tex>\Delta(G) \le 2</tex>, тогда:#*Если <tex> \Delta = 0</tex>, <tex> G = K_1</tex>#*Если <tex> \Delta = 1</tex>, <tex> G = K_2</tex>#*Если <tex> \Delta = 2</tex>, то:#*# <tex> G </tex>{{---}} либо дерево либо четный цикл и тогда <tex> \chi(G) = 2</tex>#*#<tex> G</tex> нечетный циклПоэтому мы будем считать до конца доказательства, что #<tex> \Delta(G) \ge 3</tex>.Если в <tex>G</tex> существует вершина <tex>v</tex> степени <tex> deg\ v < \Delta(G)</tex>, то по выше доказанной лемме <tex> \chi(G) \le \Delta(G)</tex>. То есть осталось рассмотреть случай, когда <tex>G</tex> {{---}} регулярный граф степени <tex>\Delta</tex>.тогда:##Если <tex>G</tex> не является вершинно двусвязным графом, тогда в графе <tex> G</tex> <tex> \exists</tex> <tex> v \in V</tex> {{---}} точка сочленения. Пусть <tex>G_1,G_2</tex> {{---}} две компоненты связности, полученные при удалении вершины <tex>v</tex>.Тогда, по выше доказанной лемме <tex>G_1,G_2</tex> можно правильно раскрасить в не более чем <tex>\Delta</tex> цветов.Поскольку количество соседей вершины <tex> v </tex> в каждой из компонент не более <tex> \Delta - 1</tex>, то <tex>G</tex> можно правильно раскрасить в не более чем <tex>\Delta</tex> цветов.##Если <tex>G</tex> является вершинно двусвязным графом. Тогда, <tex> \exists</tex> <tex> v,u \in V :(u,v) \notin E</tex> и при удалении вершин <tex>v,u</tex> граф теряет связность .Пусть <tex>G_1,G_2</tex> {{---}} два подграфа <tex> G:(G_1 \cap G_2 = \{v,u\}) \land (G_1 \cup G_2 = G)</tex>. Рассмотрим два случая.### Если сумма степеней вершин <tex>u,v</tex> в каждом из подграфов <tex>G_1,G_2</tex> меньше <tex>2(\Delta-1)</tex>. Тогда, в одном из подграфов <tex> G_1,G_2</tex> <tex> deg\ u \le \Delta - 2 </tex> или <tex> deg\ v \le \Delta - 2 </tex> то.Тоесть, подграфы <tex>G_1,G_2</tex> можно правильно раскрасить в не более чем <tex>\Delta</tex> цветов так, чтобы вершины <tex> u,v </tex> были бы разных цветов.А из этого следует, что граф <tex>G</tex> тоже можно правильно раскрасить в не более чем <tex>\Delta</tex> цветов.### Если сумма степеней вершин <tex>u,v</tex> в одном из подграфов <tex>G_1,G_2</tex> равна <tex>2(\Delta-1)</tex>.Тогда, степени обоих вершин в одном из подграфов равны <tex> \Delta - 1</tex>, например, в подграфе <tex>G_1</tex>:###* <tex> G_1,G_2 </tex> можно правильно раскрасить в не более чем <tex>\Delta</tex> цветов так, чтобы Если вершины <tex> u,v </tex> были бы разных цветов.Тогда очевидно, что оценка теоремы выполнена. ##* смежны с вершиной <tex>\exists p \in G_2: ((p,u) \in E) \land ((p,v) \in E) </tex>, тогда мы можем правильно раскрасить <tex>G_2</tex>, где степени вершин <tex>deg\ u = deg\ ,v = </tex> равны <tex>1</tex>, в не более чем <tex> \Delta </tex> цветов так, чтобы вершины <tex>u,v</tex> были одного цвета. Следовательно, можно покрасить граф <tex>G</tex> в не более чем <tex>\Delta</tex> цветов.###*[[Файл:Brooks_2.png‎|400px|thumb|Алгоритм расскраски для 3-его случая на 5ом шаге]]Если вершины <tex>\exists u_1,v_1 \in G_2: ((u,v</tex> смежны с вершинами <tex>u_1) \in E) \land ((v,v_1) \in E) \land (u_1 \neq v_1) G_2</tex>соответственно, тогда вместо вершин <tex>\{u,v\}</tex> рассмотрим вершины <tex>\{u,v_1\}</tex>.Заметим, что при удалении этих вершин граф потеряет связность, и между ними нет ребраи сумма степеней новой пары вершин в каждой из компонент полученных после их удаления меньше <tex>2(\Delta-1)</tex>.Поэтому,то есть если для этой пары вершин можно провести рассуждения аналогичные тем, которые проводились для вершин <tex> v,u</tex>.Из чего прямым образом вытекает,получится, что граф <tex> G</tex> можно правильно раскрасить в не более чем не более чем <tex>\Delta </tex> цветов.##Если вышеописанные случаи не подходят, то граф <tex>G</tex> является <tex>k</tex>-связнымграфом, где <tex>k > 2</tex>. Тогда, рассмотрим <tex>w \in V : deg\ w = \Delta</tex>. У вершины <tex>w</tex> должны существовать две соседние вершины <tex>u,v : uv \notin E </tex>, в противном случае <tex>G = K_n</tex>.Пусть <tex>G_- = G - u - v </tex>. Заметим, что <tex>G_-</tex> связный граф, запустим для <tex>G_-</tex> алгоритм обхода в ширину из вершины <tex>w</tex>. Пронумеруем вершины <tex>v_1,...,v_{n-2}</tex>, где <tex>v_i</tex> вершина рассмотренная на <tex>i</tex>ом шаге алгоритма bfs.Теперь пусть <tex> v_{n-1} = v</tex>,и <tex>v_n = u</tex>. Покрасим <tex>v_n,v_{n-1}</tex> в один цвет, далее начнем красить вершины в обратном порядке, начиная с <tex>v_{n-2}</tex> в один из <tex>\Delta</tex> цветов так, чтобы никакое ребро графа не соединяло вершины одного цвета.Заметим, что так всегда можно сделать, поскольку на <tex> i</tex>ом шаге покраски, где <tex>i \neq n</tex>, для вершины <tex> v_{n - i+1}</tex> есть не более <tex>\Delta(G) - 1</tex> уже покрашенных соседей, следовательно, вершину <tex> v_{n-i+1}</tex> можно покрасить по крайней мере в один из свободных цветов. Вершину <tex>w</tex> мы тоже сможем правильно раскрасить в один из <tex>\Delta</tex> цветов потому, что ее <tex>\Delta</tex> соседей покрашено в не более чем <tex>\Delta - 1</tex> цветов. Таким образом граф <tex> G</tex> можно правильно раскрасить в не более чем <tex>\Delta</tex> цветов.
}}
50
правок

Навигация